scholarly journals Adaptive Scatter Search to Solve the Minimum Connected Dominating Set Problem for Efficient Management of Wireless Networks

Algorithms ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 35 ◽  
Author(s):  
Abdel-Rahman Hedar ◽  
Shada N. Abdulaziz ◽  
Adel A. Sewisy ◽  
Gamal A. El-Sayed

An efficient routing using a virtual backbone (VB) network is one of the most significant improvements in the wireless sensor network (WSN). One promising method for selecting this subset of network nodes is by finding the minimum connected dominating set (MCDS), where the searching space for finding a route is restricted to nodes in this MCDS. Thus, finding MCDS in a WSN provides a flexible low-cost solution for the problem of event monitoring, particularly in places with limited or dangerous access to humans as is the case for most WSN deployments. In this paper, we proposed an adaptive scatter search (ASS-MCDS) algorithm that finds the near-optimal solution to this problem. The proposed method invokes a composite fitness function that aims to maximize the solution coverness and connectivity and minimize its cardinality. Moreover, the ASS-MCDS methods modified the scatter search framework through new local search and solution update procedures that maintain the search objectives. We tested the performance of our proposed algorithm using different benchmark-test-graph sets available in the literature. Experiments results show that our proposed algorithm gave good results in terms of solution quality.

Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1173 ◽  
Author(s):  
Ruizhi Li ◽  
Shuli Hu ◽  
Huan Liu ◽  
Ruiting Li ◽  
Dantong Ouyang ◽  
...  

The minimum connected dominating set (MCDS) problem is a very significant NP-hard combinatorial optimization problem, and it has been used in many fields such as wireless sensor networks and ad hoc networks. In this paper, we propose a novel multi-start local search algorithm (MSLS) to tackle the minimum connected dominating set problem. Firstly, we present the fitness mechanism to design the vertex score mechanism so that our algorithm can jump out of the local optimum. Secondly, we use the configuration checking (CC) mechanism to avoid the cycling problem. Then, we propose the vertex flipping mechanism to change the vertex state by combing the CC mechanism with the vertex score mechanism. Finally, we propose a multi-start local search framework based on these mechanisms. We compare the algorithm MSLS with other compared algorithms on extensive instances. The results of experiment show that MSLS is superior to other algorithms in solution quality and time efficiency on most instances.


2018 ◽  
Vol 14 (1) ◽  
pp. 155014771875563 ◽  
Author(s):  
Gulshan Kumar ◽  
Mritunjay Kumar Rai ◽  
Rahul Saha ◽  
Hye-jin Kim

Localization is one of the key concepts in wireless sensor networks. Different techniques and measures to calculate the location of unknown nodes were introduced in recent past. But the issue of nodes’ mobility requires more attention. The algorithms introduced earlier to support mobility lack the utilization of the anchor nodes’ privileges. Therefore, in this article, an improved DV-Hop localization algorithm is introduced that supports the mobility of anchor nodes as well as unknown nodes. Coordination of anchor nodes creates a minimum connected dominating set that works as a backbone in the proposed algorithm. The focus of the research paper is to locate unknown nodes with the help of anchor nodes by utilizing the network resources efficiently. The simulated results in network simulator-2 and the statistical analysis of the data provide a clear impression that our novel algorithm improves the error rate and the time consumption.


2010 ◽  
Vol 21 (03) ◽  
pp. 459-476 ◽  
Author(s):  
SAYAKA KAMEI ◽  
HIROTSUGU KAKUGAWA

Self-stabilization is a theoretical framework of non-masking fault-tolerant distributed algorithms. A self-stabilizing system tolerates any kind and any finite number of transient faults, such as message loss, memory corruption, and topology change. Because such transient faults occur so frequently in mobile ad hoc networks, distributed algorithms on them should tolerate such events. In this paper, we propose a self-stabilizing distributed approximation algorithm for the minimum connected dominating set, which can be used, for example, as a virtual backbone or routing in mobile ad hoc networks. The size of the solution by our algorithm is at most 7.6|Dopt|+1.4, where Dopt is the minimum connected dominating set. The time complexity is O(k) rounds, where k is the depth of input BFS tree.


Sign in / Sign up

Export Citation Format

Share Document