scholarly journals Noncircular Sources-Based Sparse Representation Algorithm for Direction of Arrival Estimation in MIMO Radar with Mutual Coupling

Algorithms ◽  
2016 ◽  
Vol 9 (3) ◽  
pp. 61 ◽  
Author(s):  
Weidong Zhou ◽  
Jing Liu ◽  
Pengxiang Zhu ◽  
Wenhe Gong ◽  
Jiaxin Hou
2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Zhi-Chao Sha ◽  
Zhang-Meng Liu ◽  
Zhi-Tao Huang ◽  
Yi-Yu Zhou

This paper addresses the problem of direction-of-arrival (DOA) estimation of coherent signals in the presence of unknown mutual coupling, and an autoregression (AR) model-based method is proposed. The effects of mutual coupling can be eliminated by the inherent mechanism of the proposed algorithm, so the DOAs can be accurately estimated without any calibration sources. After the mixing matrix is estimated by independent component analysis (ICA), several parameter equations are established upon the mixing matrix. Finally, all DOAs of coherent signals are estimated by solving these equations. Compared with traditional methods, the proposed method has higher angle resolution and estimation accuracy. Simulation results demonstrate the effectiveness of the algorithm.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2788 ◽  
Author(s):  
Yuehao Guo ◽  
Xianpeng Wang ◽  
Wensi Wang ◽  
Mengxing Huang ◽  
Chong Shen ◽  
...  

In the paper, the estimation of joint direction-of-departure (DOD) and direction-of-arrival (DOA) for strictly noncircular targets in multiple-input multiple-output (MIMO) radar with unknown mutual coupling is considered, and a tensor-based angle estimation method is proposed. In the proposed method, making use of the banded symmetric Toeplitz structure of the mutual coupling matrix, the influence of the unknown mutual coupling is removed in the tensor domain. Then, a special enhancement tensor is formulated to capture both the noncircularity and inherent multidimensional structure of strictly noncircular signals. After that, the higher-order singular value decomposition (HOSVD) technology is applied for estimating the tensor-based signal subspace. Finally, the direction-of-departure (DOD) and direction-of-arrival (DOA) estimation is obtained by utilizing the rotational invariance technique. Due to the use of both noncircularity and multidimensional structure of the detected signal, the algorithm in this paper has better angle estimation performance than other subspace-based algorithms. The experiment results verify that the method proposed has better angle estimation performance.


Sign in / Sign up

Export Citation Format

Share Document