scholarly journals Prescribed Performance Active Braking Control with Reference Adaptation for High-Speed Trains

Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 313
Author(s):  
Rui Zhang ◽  
Jun Peng ◽  
Bin Chen ◽  
Kai Gao ◽  
Yingze Yang ◽  
...  

Active braking control systems are vital for the safety of high-speed trains by leading the train operation at its maximum adhesion state. The train adhesion is a nonlinear function of the slip ratio and varies with the uncertain wheel-rail contact conditions. A nonlinear active braking control with rapid and accurate tracking performance is highly required for train braking systems. This paper proposes a novel prescribed performance active braking control with reference adaptation to obtain the maximum adhesion force. The developed feedback linearization controller employs a prescribed performance function that specifies the convergence rate, steady-state error, and maximum overshoot to ensure the transient and steady-state control performance. Furthermore, in the designed control approach, a continuous-time unscented Kalman filter is introduced to estimate the uncertainty of wheel-rail adhesion. The estimation is utilized to represent uncertainty and compensate for the prescribed performance control law. Finally, based on the estimated wheel-rail adhesion, an on-line optimal slip ratio generation algorithm is proposed for the adaptation of the reference wheel slip. The stability of the system is provided, and experiment results validate the effectiveness of the proposed method.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Wenchuan Cai ◽  
Wenhao Liao ◽  
Danyong Li ◽  
Yongduan Song

Train traction/braking control, one of the key enabling technologies for automatic train operation, literally takes its action through adhesion force. However, adhesion coefficient of high speed train (HST) is uncertain in general because it varies with wheel-rail surface condition and running speed; thus, it is extremely difficult to be measured, which makes traction/braking control design and implementation of HSTs greatly challenging. In this work, force observers are applied to estimate the adhesion force or/and the resistance, based on which simple traction/braking control schemes are established under the consideration of actual wheel-rail adhesion condition. It is shown that the proposed controllers have simple structure and can be easily implemented from real applications. Numerical simulation also validates the effectiveness of the proposed control scheme.


Author(s):  
Bin Chen ◽  
Zhiwu Huang ◽  
Rui Zhang ◽  
Fu Jiang ◽  
Weirong Liu ◽  
...  

2014 ◽  
Vol 42 (3) ◽  
pp. 116-144 ◽  
Author(s):  
Tim Linke ◽  
Matthias Wangenheim ◽  
Hagen Lind ◽  
Stefan Ripka

ABSTRACT For modeling an aircraft tire using the brush model method, the friction coefficient μ between rubber and asphalt should not only be described in terms of the applied pressure and sliding velocity/slip ratio, but also by local temperature inside the contact area. Its influence cannot be neglected, since it leads to significant material property changes. Therefore, investigations on different test rigs are analyzed using thermal recordings of an infrared camera. First measurements are done on a high speed linear tester (HiLiTe), a test rig at the Institute of Dynamics and Vibration Research (IDS) at Leibniz University Hanover, Germany. It allows testing single tread block samples with a constant slip ratio of 100%, that is, pure sliding, on a variety of surfaces such as dry and wet asphalt or concrete, as well as on snow and ice. Results in this paper show that the convection has a smaller impact on tread block cooling than the actual contact between runway surface and sample. Since colder surface temperatures lead to higher friction, this effect antagonizes the excitation frequency, which heats up the rubber sample at high velocities. On long-lasting test sequences a quasi–steady-state friction coefficient might be achieved once these effects start to converge. Still, owing to permanent slip, the abrasion leads to cooling as the hot top layer of the rubber is removed occasionally. In addition to these quasi–steady-state measurements on HiLiTe, the thermal behavior of an aircraft tire is investigated with an autonomously running test rig. It allows realistic testing on an airfield runway by altering load, speed, and slip angle of the tire within and beyond the regions of a passenger aircraft. During the measurements, new and partially unknown effects could be observed. The temperature is mostly influenced by the slip angle followed by speed and load. Furthermore, the contact between tire and runway leads to cooling of the tread but does not affect the temperature inside the grooves. They heat up separately and tend to transfer heat to the tread if the cooling by the runway becomes too low.


2018 ◽  
Vol 178 ◽  
pp. 06004
Author(s):  
Marius-Adrian Spiroiu

Wheel-rail adhesion is a fundamental aspect in rail transport, with high impact on traction and braking of trains. In the case of high speeds trains, wheel-rail adhesion is particularly important, as the maximum usable traction force is limited by the adhesion force. The present paper analyses the influence of wheel-rail adhesion on the maximum speed of trains, considering ranges of usual values for the track gradient and the adhesion coefficient and the real data of two Japanese high-speed trains. Analysis shows that low adhesion and high track gradient result in significant reduction of train speed.


Author(s):  
Caglar Uyulan ◽  
Metin Gokasan ◽  
Seta Bogosyan

Excessive driving force applied to the trains leads to an inadequate utilization of the adhesion phenomenon occurred at the wheel–rail contact, and an unnecessary power consumption, while inadequate driving force causes the train to run inefficiently. For this reason, the necessity of re-adhesion control in the safe and reliable operation, in the balance of energy consumption, is indisputable. A comparison of the two re-adhesion control strategies, one of which is robust adaptive and the other of which is the modified super-twisting sliding mode, has been presented in this article. These control algorithms developed suppress the wheel slip on time and maintain optimal traction performance after re-adhesion under the nonlinear properties of the traction system and the uncertainties of the adhesion level at the wheel–rail interface. Due to the complex nonlinear relationship between the adhesion force and the slip angular velocity, such a problem becomes a hard problem to overcome as long as the optimal slip ratio is not known. An optimal search strategy has also been developed to estimate and to track the desired slip angular velocity. By means of the proposed strategies, the traction motor control torque is automatically adjusted so as to ensure that the train operates away from the unstable slip zone but adjacent to the optimal adhesion region, and the desired traction capability is attainable once adhesion is regained. Mathematical analyzes are also provided to ensure the ultimate boundedness of the algorithms developed. The effectiveness of the proposed re-adhesion strategies is validated through the theoretical analysis and numerical simulations conducted in MATLAB and Simulink. As a result of consecutive simulations, modified super-twisting algorithm has shown better performance as compared to the robust adaptive one in tracking the optimal slip velocity as wheel–rail contact conditions switch suddenly.


Sign in / Sign up

Export Citation Format

Share Document