scholarly journals Comparative Environmental and Cost Analysis of Alternative Production Scenarios Associated with a Helicopter’s Canopy

Aerospace ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 3 ◽  
Author(s):  
Christos V. Katsiropoulos ◽  
Andreas Loukopoulos ◽  
Spiros G. Pantelakis

In the present work the carbon footprint and the financial viability of different materials, manufacturing scenarios, as well as recycling scenarios, associated with the production of aeronautical structural components are assessed. The materials considered were carbon fiber reinforced epoxy and carbon fiber reinforced PEEK (polyetheretherketone). The manufacturing techniques compared were the autoclave, resin transfer molding (RTM) and cold diaphragm forming (CDF). The recycling scenarios included mechanical recycling and pyrolysis. For this purpose, Life Cycle Analysis (LCA) and Life Cycle Costing (LCC) models were developed and implemented for the case of a helicopter’s canopy production. The results of the study pointed out that producing the canopy by using carbon fiber reinforced thermosetting composites and involving RTM as the manufacturing process is the optimal route both in terms of environmental and financial efficiency. The environmental and financial efficiency of the scenarios including thermoplastic composites as the material of choice is impaired from both the high embodied energy and raw material cost of PEEK. The scenarios investigated do not account for potential benefits arising from the recyclability and the improved reusability of thermoplastic matrices as compared to thermosetting ones. This underlines the need for a holistic aircraft structural optimization approach including not only performance and weight but also cost and environmental criteria.

2018 ◽  
Vol 233 ◽  
pp. 00004
Author(s):  
Ch.V. Katsiropoulos ◽  
A. Loukopoulos ◽  
Sp.G. Pantelakis

In the present work Life Cycle Analysis (LCA) and Life Cycle Costing models (LCC) were developed for quantifying the financial and environmental performance of different material (carbon fiber reinforced thermosetting and carbon fiber reinforced thermoplastic composites) and manufacturing scenarios (autoclave, RTM and CDF) associated with the production of aeronautical structural components. To validate the models developed, they were implemented for the case of a helicopter’s canopy. The results from the analysis pointed out the environmental and financial 1advantage of producing the canopy from carbon fiber reinforced thermosetting composites involving RTM as the manufacturing process. On the other hand, the environmental and financial viability of the scenarios including thermoplastic composites as the material of choice is impaired from both the high embodied energy and raw material cost of PEEK. However, potential benefits from thermoplastic composites like recyclability and reusability as well as the high production rates that they offer and not taken into account in this study could improve their environmental and financial viability. This underlines the need to include potential reusing and recycling applications of the composites, as well as circular economy considerations to the criteria for designing an aircraft structure, selecting the material for this structure and finally manufacturing the structure.


2021 ◽  
Author(s):  
Ashir Mittal ◽  
Anmol Kothari ◽  
Sai Aditya Pradeep ◽  
Sushil Savla ◽  
Madhura Limaye ◽  
...  

2020 ◽  
pp. 089270572094537
Author(s):  
Van-Tho Hoang ◽  
Bo-Seong Kwon ◽  
Jung-Won Sung ◽  
Hyeon-Seok Choe ◽  
Se-Woon Oh ◽  
...  

Promising carbon fiber-reinforced thermoplastic (CF/polyetherketoneketone (PEKK)) composites were fabricated by the state-of-the-art technology known as “Automated Fiber Placement.” The mechanical properties of CF/PEKK were evaluated for four different postprocessing methods: in situ consolidation, annealing, vacuum bag only (VBO), and hot press (HP). The evaluation was performed by narrowing down the relevant processing parameters (temperature and layup speed). Furthermore, the void content and crystallinity of CF/PEKK were measured to determine the effect of these postprocessing processes. The HP process resulted in the best quality with the highest interlaminar shear strength, highest crystallinity degree, and lowest void content. The second most effective method was VBO, and annealing also realized an improvement compared with in situ consolidation. The correlation between the postprocessing method and the void content and crystallinity degree was also discussed.


2014 ◽  
Vol 697 ◽  
pp. 102-108
Author(s):  
Jian Hua Ning

Owing to the excellent mechanical properties and formability of carbon fiber reinforced thermoplastic composites, this composite has been applied in car industry. The static and dynamic mechanical properties of the composites are investigated under strain-rate from 0.001/s to 50/s. The experimental results show that the elastic model and tensile strength increase with the increase of strain rate, and show that the composite has remarkable rate-hardening effect. A constitute model that including rate-dependent effect is applied to present the strain-stress curve of the composite. The constitute model provides accurate constitute function for finite element analysis of the composite.. The microstructure of the composite is also investigated with scanning electric microscope, and the failure modes are discussed. The investigation provides the basis for engineering application of the composite.


Sign in / Sign up

Export Citation Format

Share Document