crystallinity degree
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 100)

H-INDEX

10
(FIVE YEARS 4)

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 136
Author(s):  
Edson Antonio dos Santos Filho ◽  
Carlos Bruno Barreto Luna ◽  
Danilo Diniz Siqueira ◽  
Eduardo da Silva Barbosa Ferreira ◽  
Edcleide Maria Araújo

Poly(ethylene-octene) grafted with glycidyl methacrylate (POE-g-GMA) and ethylene elastomeric grafted with glycidyl methacrylate (EE-g-GMA) were used as impact modifiers, aiming for tailoring poly(lactic acid) (PLA) properties. POE-g-GMA and EE-g-GMA was used in a proportion of 5; 7.5 and 10%, considering a good balance of properties for PLA. The PLA/POE-g-GMA and PLA/EE-g-GMA blends were processed in a twin-screw extruder and injection molded. The FTIR spectra indicated interactions between the PLA and the modifiers. The 10% addition of EE-g-GMA and POE-g-GMA promoted significant increases in impact strength, with gains of 108% and 140%, respectively. These acted as heterogeneous nucleating agents in the PLA matrix, generating a higher crystallinity degree for the blends. This impacted to keep the thermal deflection temperature (HDT) and Shore D hardness at the same level as PLA. By thermogravimetry (TG), the blends showed increased thermal stability, suggesting a stabilizing effect of the modifiers POE-g-GMA and EE-g-GMA on the PLA matrix. Scanning electron microscopy (SEM) showed dispersed POE-g-GMA and EE-g-GMA particles, as well as the presence of ligand reinforcing the systems interaction. The PLA properties can be tailored and improved by adding small concentrations of POE-g-GMA and EE-g-GMA. In light of this, new environmentally friendly and semi-biodegradable materials can be manufactured for application in the packaging industry.


2021 ◽  
Vol 11 (1) ◽  
pp. 136-144
Author(s):  
Yangjie Han ◽  
Renwang Yu ◽  
Honghua Liu ◽  
Yanhui Chu

AbstractThe high-purity and superfine high-entropy zirconate nanopowders, namely (Y0.25La0.25Sm0.25Eu0.25)2Zr2O7 nanopowders, without agglomeration, were successfully synthesized via polymerized complex method at low temperatures for the first time. The results showed that the crystallinity degree, lattice strain, and particle size of the as-synthesized powders were gradually enhanced with the increase of the synthesis temperature from 800 to 1300 °C. The as-synthesized powders involved fluorite phase in the range of 800–1200 °C while they underwent the phase evolution from fluorite to pyrochlore at 1300 °C. It is worth mentioning that the as-synthesized powders at 900 °C are of the highest quality among all the as-synthesized powders, which is due to the fact that they not only possess the particle size of 11 nm without agglomeration, but also show high purity and good compositional uniformity.


Author(s):  
amal aboelnaga ◽  
talaat Meaz ◽  
amany M elnahrawy

Abstract The aim of this study is to investigate the effect of different doses of Velosef in magnesium silica/chitosan nanocomposite in terms of structural, morphology, optical properties, and bioactivity. Loading Velosef in fine-sized magnesium silica/chitosan is an efficient engineering approach for drug delivery. The sol-gel process was used to prepare magnesium silica fine-sized before being blended into chitosan matrix, which acts as a potential morphogenetic biomaterial. The Velosef/magnesium silica/chitosan nanocomposites were characterized by XRD, TEM, SEM, FTIR, UV-absorption, and antimicrobial studies. The XRD was characteristic of the crystallinity degree of the MgO-SiO2/chitosan/Velosef nanocomposites with three maximum peaks at 26.37°, 33.34o, 36.9°. FTIR results indicated the structural change occurred with the Velosef sol-gel polymerization process. UV-absorbance reveals that the MgO-SiO2/chitosan nanocomposite appeared a high performance for loading Velosef at two absorption bands at 253 and 347 nm. The MgO-SiO2/Chitosan/Velosef nanocomposites showed considerable antimicrobial activity in opposition to the tested representative microorganisms. The maximum antimicrobial activity was obtained with MgO-SiO2/Chitosan against both Escherichia coli and Candida albicans (37 mm), while the minimum antimicrobial activity (30 mm) was recorded against B. mycoides and E. coli with control.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7549
Author(s):  
Maxim V. Zdorovets ◽  
Bekzat A. Prmantayeva ◽  
Artem L. Kozlovskiy

The aim of this work was to study the effect of samarium oxide doping on a SrTiO3 perovskite ceramic. After analyzing the data obtained on the morphological features of the synthesized structures, it was found that an increase in the dopant concentration led not only to a change in the morphological features, but also in the density of the ferroelectrics. Using the X-ray diffraction method, it was found that doping with Sm2O3 led to the formation of a multiphase system of two cubic phases of SrTiO3 and Sm2O3. At the same time, an increase in the concentration of Sm2O3 dopant led to a change in the crystallinity degree, as well as deformation of the structure. Evaluation of the efficiency of use of synthesized ferroelectrics as catalysts for purification of aqueous media from manganese showed that an increase in the concentration of Sm2O3 dopant led to an increase in purification efficiency by 50–70%.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3308
Author(s):  
Shikha Singh ◽  
Mitul Kumar Patel ◽  
Shiyu Geng ◽  
Anita Teleman ◽  
Natalia Herrera ◽  
...  

The orientation of polymer composites is one way to increase the mechanical properties of the material in a desired direction. In this study, the aim was to orient chitin nanocrystal (ChNC)-reinforced poly(lactic acid) (PLA) nanocomposites by combining two techniques: calendering and solid-state drawing. The effect of orientation on thermal properties, crystallinity, degree of orientation, mechanical properties and microstructure was studied. The orientation affected the thermal and structural behavior of the nanocomposites. The degree of crystallinity increased from 8% for the isotropic compression-molded films to 53% for the nanocomposites drawn with the highest draw ratio. The wide-angle X-ray scattering results confirmed an orientation factor of 0.9 for the solid-state drawn nanocomposites. The mechanical properties of the oriented nanocomposite films were significantly improved by the orientation, and the pre-orientation achieved by film calendering showed very positive effects on solid-state drawn nanocomposites: The highest mechanical properties were achieved for pre-oriented nanocomposites. The stiffness increased from 2.3 to 4 GPa, the strength from 37 to 170 MPa, the elongation at break from 3 to 75%, and the work of fracture from 1 to 96 MJ/m3. This study demonstrates that the pre-orientation has positive effect on the orientation of the nanocomposites structure and that it is an extremely efficient means to produce films with high strength and toughness.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012040
Author(s):  
N M Tolkach ◽  
N V Vishnyakov ◽  
A O Yakubov ◽  
A U Sudakova ◽  
E S Trofimov ◽  
...  

Abstract The evaluation of the crystallinity degree for the local regions in Ge2Sb2Te5 (GST) thin films after phase state transformation by laser pulses at 405 nm wavelength was analyzed using the Raman spectroscopy. The modes of laser radiation for controlling the reflectivity and transmissivity at 1550 nm telecommunication wavelength of the local regions in the GST film were established. The results obtained make it possible to implement the method of the completely optical control of the multilevel modulation of the optical signals for the integrated optics devices.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1459
Author(s):  
Igor A. Ivanov ◽  
Ruslan M. Rspayev ◽  
Aset D. Sapar ◽  
Daulet A. Mustafin ◽  
Maxim V. Zdorovets ◽  
...  

This paper presents the results of a study on the influence of Y2O3 doping on the resistance to radiation damage and an assessment of structural changes associated with the accumulation of radiation defects in CeO2 microparticles under irradiation with heavy Xe22+ ions. The relevance of this study consists of the prospects for the use of CeO2 microparticles as materials and candidates of inert matrices of nuclear fuel. A method of solid-phase synthesis was applied to obtain microparticles with different concentrations of dopant. It included grinding of CeO2 and Y2O3 microparticles followed by thermal sintering at 1100 °C in an oxygen-containing medium to produce highly ordered microparticles. During the study of the structural characteristics of the synthesized microparticles, it was found that increasing the dopant concentration from 0.05 mol.% to 0.15 mol.% leads to an increase in the crystallinity degree as well as a decrease in dislocation density. According to the results of the assessment of the resistance of microparticles to radiation damage, it was found that an increase in the dopant concentration leads to a decrease in swelling and structural distortion by more than 2.5–3 times, which indicates an increase in the radiation resistance.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7604
Author(s):  
Qiuju Liang ◽  
Jianhong Yao ◽  
Zhangbo Hu ◽  
Puxin Wei ◽  
Haodong Lu ◽  
...  

Solution–processed organic solar cells (OSC) have been explored widely due to their low cost and convenience, and impressive power conversion efficiencies (PCEs) which have surpassed 18%. In particular, the optimization of film morphology, including the phase separation structure and crystallinity degree of donor and acceptor domains, is crucially important to the improvement in PCE. Considering that the film morphology optimization of many blends can be achieved by regulating the film–forming process, it is necessary to take note of the employment of solvents and additives used during film processing, as well as the film–forming conditions. Herein, we summarize the recent investigations about thin films and expect to give some guidance for its prospective progress. The different film morphologies are discussed in detail to reveal the relationship between the morphology and device performance. Then, the principle of morphology regulating is concluded with. Finally, a future controlling of the film morphology and development is briefly outlined, which may provide some guidance for further optimizing the device performance.


2021 ◽  
pp. 002199832110561
Author(s):  
Ugur Soykan

This present study centers sensitively on the determination of the effect of natural turkey feather fibers (TFFs) loading on fundamental features (thermal, mechanical, water-uptake, and micro-structural) of thermoplastic polyurethane (TPU). The composites with different TFFs contents (3, 6, 9, and 12 wt.%) were fabricated by the melt blending method using the twin screw extruder and micro-injection molder. The samples were characterized by means of differential scanning calorimeter (DSC), universal mechanical (tensile and hardness) tester, water-uptake, and scanning electron microscope (SEM) techniques. The thermal analysis depicted that the melting temperatures of the soft and hard segments as well as the crystallinity degree of TPU increased consistently with the increase of TFFs loading level thanks to the formation of better close-packed TPU chains in the matrices. As for the mechanical test results, when compared neat TPU, the tensile strengths were reinforced by 26.8% and 19.7%, and the modulus increased by 6.6% and 45.1% for the composite samples including 3% and 6% of TFFs, respectively. However, drastic diminishment were observed at further contents. Additionally, TFFs loadings brought about gradual increase in the water-uptake capacities of the composites due to the increasing of the number of voids and omnipresent flaws in TPU matrices. The taken SEM images also revealed that, at low contents, there existed the enrichment of interfacial adhesion between TFFs and TPU matrix, whereas the morphological appearance of the composites get worse at high contents accompanied by the formation of micro-structural defects.


2021 ◽  
Vol 913 (1) ◽  
pp. 012029
Author(s):  
I W Arnata ◽  
B A Harsojuwono ◽  
A Hartiati ◽  
I B W Gunam ◽  
A A M D Anggreni ◽  
...  

Abstract The tapioca-based starch industry produces solid waste in abundance that has not been used optimally, especially the cellulose fraction. This study aimed to optimize the H2O2 concentration and the process temperature of cellulose fiber isolation from tapioca solid waste. Statistical regression modeling and optimization of H2O2 concentration and process temperature using the response surface methodology. A central composite design (CCD) was applied for experimental design and analysis of the effect of H2O2 concentration and process temperature on multi-response characteristics of cellulose, consisting of whiteness index (WI), yield, and α-cellulose content. Cellulose fibers were characterized, including surface morphology, crystallinity degree, and thermal stability. The results showed that the H2O2 concentration and process temperature were significantly affected by WI, yield, and α-cellulose content. The maximum WI, yield, and α-cellulose content were 63.99%, 65.73% (w/w), and 78.31% (w/w), respectively, obtained from H2O2 concentration of 22.62% (v/v) and process temperature of 93.51ºC. This cellulose has a relatively coarse fiber formation, with a high degree of crystallinity and thermal stability. Thus, cellulose from TSW might have a potential to be applied in broader fields.


Sign in / Sign up

Export Citation Format

Share Document