mechanical recycling
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 106)

H-INDEX

25
(FIVE YEARS 5)

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 196
Author(s):  
Lynn Trossaert ◽  
Matthias De Vel ◽  
Ludwig Cardon ◽  
Mariya Edeleva

Sustainability and recyclability are among the main driving forces in the plastics industry, since the pressure on crude oil resources and the environment is increasing. The aim of this research is to develop a sustainable thermoformable multilayer food packaging, based on co-polyesters, which is suitable for hot-fill applications and allows for recycling in a conventional waste stream. As a polymer material for the outer layer, we selected a modified polyethylene terephthalate (PETM), which is an amorphous co-polyester with a high glass transition temperature (±105 °C) and thus high thermal stability and transparency. The inner layer consists of 1,4-cyclohexylene dimethanol-modified polyethylene terephthalate (PETg), which is allowed to be recycled in a PET stream. Multilayers with a total thickness of 1 mm and a layer thickness distribution of 10/80/10 have been produced. To test the recyclability, sheets which contained 20% and 50% regrind of the initial multilayer in their middle PETg layer have been produced as well. The sheet produced from virgin pellets and the one containing 20% regrind in the middle layer showed no visible haze. This was not the case for the one containing 50% regrind in the middle layer, which was confirmed by haze measurements. The hot-fill test results showed no shrinkage or warpage for the multilayer trays for all temperatures applied, namely 95, 85, 75 and 65 °C. This is a remarkable improvement compared to pure PETg trays, which show a visible deformation after exposure to hot-fill conditions of 95 °C and 85 °C.


2022 ◽  
Vol 58 (4) ◽  
pp. 210-215
Author(s):  
Antypas Imad Rezakalla ◽  
Savostina Tatiana Petrovna

High and low density polyethylene materials constitute about 48% of total weight of plastics waste in Europe, that depends on the frequent use of these materials in packaging applications. This paper analyze the recycling effect on the mechanical properties of high and low density polyethylene (HDPE and LDPE). A mechanical recycling process was tested for the plastics waste of high and low density polyethylene, then a tensile and impact tests were performed on different mixing ratios for each of the both materials ranging from 100% of the virgin material and up to 100% of the recycled material with a difference of 10% of the sample to the other. This paper discusses the tensile properties of tensile stress at the fracture, elongation and modulus of elasticity and the impact test results for HDPE and LDPE were compared with each other.


Author(s):  
Kyann De Smit ◽  
Tom Wieme ◽  
Yoshi Marien ◽  
Paul Van Steenberge ◽  
Dagmar R. D'hooge ◽  
...  

Reactive extrusion (REX) is an important processing and production technique with applications in the field of polymer synthesis, modification and recycling. A full REX design demands a multi-scale approach recognizing...


Detritus ◽  
2021 ◽  
pp. 42-48
Author(s):  
Ayah Alassali ◽  
Wolfgang Calmano ◽  
Kerstin Kuchta

This study has the aim of analysing the degree of contamination of recycled polyolefin purchased from the market by focusing on the content of polycyclic aromatic hydrocarbons (PAHs). Additionally, the impact of the mechanical recycling process on the polyolefin chemical quality was investigated. Results indicated that recycled polyethylene (PE) had higher PAHs concentrations by 10 to 20 folds in comparison to the pristine PE. Similarly, recycled polypropylene (PP) indicated higher PAHs concentrations in comparison to the virgin polypropylene, yet with lower degree of difference. Analysing the 8 indicators assigned by the Regulation EU 1272/2013 amending REACH Annex XVII, all recycled specimens showed concentrations lower than the limit of 0.5 mg kg-1, which indicates that there is no restriction in material’s utilisation. This study functioned as a preliminary assessment to check the suitability of recycled plastics for their further utilisation. Additionally, the study indicates that polyolefin can experience quality deterioration when uncontrolled recycling conditions are applied.


2021 ◽  
Author(s):  
Ed Cook ◽  
Costas A Velis ◽  
Cottom Josh

Over the coming decades, a large additional mass of plastic waste will become available for recycling, as the world’s largest fast moving consumer goods companies step up efforts to reduce plastic pollution and facilitate a circular economy. Finding ways to recover value from this material is a substantial challenge that has prompted exploration of novel processes, such as ‘chemical recycling’, as well as more established ones, such as incineration with energy recovery. Many of these efforts will take place in the Global South, where plastic pollution and due to mismanagement of waste are most acute. New infrastructure will need to be developed, and it is important that the processes and systems chosen do not result in adverse effects on human health and the environment. This concern is particularly acute in countries that lack effective, well-resourced and independent systems for environmental regulation and the protection of occupational and public health. Here, we present a rapid review and critical semi-quantitative assessment of the potential risks posed by eight approaches to recovering value (resource recovery, circular economy) from post-consumer plastic packaging waste that has been collected and separated with the purported intention of recycling. The focus is on the Global South, where there are more chances that high risk processes could be run below standards of safe operation (though much of the evidence reviewed is inevitably based on research outcomes obtained in the Global North context). Our assessment indicates that under realistic, i.e. non-idealised operational conditions, mechanical reprocessing is the least impactful on the environment and is the most appropriate and effective method for implementation in the Global South. We find little difference in potential risks between so called ‘bottle-to-fibre’ and ‘bottle-to-bottle’ processes as they involve similar processing and both result in substantial avoided burdens from virgin production. The lack of real-world process data for the groups of processes known as ‘chemical recycling’ make them hard to assess. At present, there is no strong evidence that any of them have reached commercial stability when applied to processing post-consumer plastic packaging waste. Given this lack of maturity and potential for risk to human health and the environment (inferred through the handling of potentially hazardous substances under pressure and heat), it is hard to see how they will make a useful addition to the circular economy in the Global South in the near future. Incineration of waste plastics that have been collected for recycling is comparable with other forms of fossil fuel combustion used to generate energy and, despite the lack of process data, the same is likely for co-processing in cement kilns: notably, neither of these processes can be described as ‘recycling’ and, in general, are deemed as only the last resort in circular cascading systems. Though contemporary air pollution control technology is capable of comprehensively mitigating harmful emissions from combustion, there is a high risk that costly maintenance and management will not be carried out in the absence of strong regulation and enforcement. Inevitably, increasing circular economy activity will require expansion towards targeting flexible, multi-material and multi-layer products, for which mechanical recycling has well-established limitations; which has prompted exploration of alternative approaches. Yet, our comparative risk overview indicates major barriers to changing resource recovery mode from the already dominant mechanical recycling mode towards other nascent or energetic recovery approaches.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4208
Author(s):  
Essam Shehab ◽  
Arshyn Meiirbekov ◽  
Akniyet Amantayeva ◽  
Aidar Suleimen ◽  
Serik Tokbolat ◽  
...  

Cost-effective and environmentally responsible ways of carbon fiber-reinforced composite (CFRP) recycling are increasingly important, owing to the rapidly increasing use of these materials in many industries such as the aerospace, automotive and energy sectors. Product designers need to consider the costs associated with manufacturing and the end-of-life stage of such materials to make informed decisions. They also need to understand the current methods of composite recycling and disposal and their impact on the end-of-life costs. A comprehensive literature review indicated that there is no such tool to estimate CFRP recycling costs without any prior knowledge and expertise. Therefore, this research paper proposed a novel knowledge-based system for the cost modelling of recycling CFRP that does not require in-depth knowledge from a user. A prototype of a cost estimation system has been developed based on existing CFRP recycling techniques such as mechanical recycling, pyrolysis, fluidized bed, and supercritical water. The proposed system has the ability to select the appropriate recycling techniques based on a user’s needs with the help of an optimization module based on the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Estimating recycling costs has taken into consideration various factors such as different material types in different industries, transportation, and dismantling costs. The developed system can be employed to support early-stage designers and decision-making stakeholders in terms of understanding and predicting recycling costs easily and quickly.


2021 ◽  
Vol 13 (22) ◽  
pp. 12854
Author(s):  
Frank Welle

Polyethylene terephthalate (PET) is one of the main packaging materials for beverage bottles. Even if this polymer is good to recycle, mechanical recycling processes need a well-sorted input fraction. For less-sorted PET packaging, or even non-food input sources, chemical recycling seems to be a solution to increase PET recycling. For post-consumer recyclates in packaging applications, it is essential that the safety of the recyclates is guaranteed, and the consumers’ health protected. For mechanical recycling processes, evaluation criteria are already established. For chemical recycling processes, however, such evaluation criteria are only roughly available. This study evaluated the safety of the chemical recycling process similar to the approach of the European Food Safety Authority (EFSA). However, due to the lack of information about the contamination level of the input materials for the chemical recycling process, the evaluation was adapted. In addition, the evaluation should be performed separately for the depolymerisation and for the repolymerisation steps. However, due to the high cleaning efficiencies of both steps, the evaluation can focus on the repolymerisation. This simplifies the assessment of the chemical recycling processes considerably.


2021 ◽  
Vol 5 (11) ◽  
pp. 299
Author(s):  
Julien Moothoo ◽  
Mahadev Bar ◽  
Pierre Ouagne

Recycling of thermoplastic composites has drawn a considerable attention in the recent years. However, the main issue with recycled composites is their inferior mechanical properties compared to the virgin ones. In this present study, an alternative route to the traditional mechanical recycling technique of thermoplastic composites has been investigated with the view to increase mechanical properties of the recycled parts. In this regard, the glass/polypropylene laminate offcuts are cut in different grain sizes and processed in bulk form, using compression moulding. Further, the effect of different grain sizes (i.e., different lengths, widths and thicknesses) and other process-related parameters (such as mould coverage) on the tensile properties of recycled aggregate-reinforced composites have been investigated. The tensile properties of all composite samples are tested according to ISO 527-4 test method and the significance of test results is evaluated according to Student’s t-test and Fisher’s F-test respectively. It is observed that the tensile moduli of the recycled panels are close to the equivalent quasi-isotropic continuous fibre-reinforced reference laminate while there is a noteworthy difference in the strengths of the recycled composites. At this stage, the manufactured recycled composites show potential for stiffness-driven application.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3834
Author(s):  
Damayanti Damayanti ◽  
Latasya Adelia Wulandari ◽  
Adhanto Bagaskoro ◽  
Aditya Rianjanu ◽  
Ho-Shing Wu

The fashion industry contributes to a significant environmental issue due to the increasing production and needs of the industry. The proactive efforts toward developing a more sustainable process via textile recycling has become the preferable solution. This urgent and important need to develop cheap and efficient recycling methods for textile waste has led to the research community’s development of various recycling methods. The textile waste recycling process can be categorized into chemical and mechanical recycling methods. This paper provides an overview of the state of the art regarding different types of textile recycling technologies along with their current challenges and limitations. The critical parameters determining recycling performance are summarized and discussed and focus on the current challenges in mechanical and chemical recycling (pyrolysis, enzymatic hydrolysis, hydrothermal, ammonolysis, and glycolysis). Textile waste has been demonstrated to be re-spun into yarn (re-woven or knitted) by spinning carded yarn and mixed shoddy through mechanical recycling. On the other hand, it is difficult to recycle some textiles by means of enzymatic hydrolysis; high product yield has been shown under mild temperatures. Furthermore, the emergence of existing technology such as the internet of things (IoT) being implemented to enable efficient textile waste sorting and identification is also discussed. Moreover, we provide an outlook as to upcoming technological developments that will contribute to facilitating the circular economy, allowing for a more sustainable textile recycling process.


Recycling ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 72
Author(s):  
Beatrice Colombo ◽  
Paolo Gaiardelli ◽  
Stefano Dotti ◽  
Flavio Caretto ◽  
Gaetano Coletta

Fiber-reinforced plastic composite materials are increasingly used in many industrial applications, leading to an increase in the amount of waste that must be treated to avoid environmental problems. Currently, the scientific literature classifies existing recycling technologies into three macro-categories: mechanical, thermal, and chemical; however, none are identified as superior to the others. Therefore, scholars and companies struggle to understand where to focus their efforts. Patent analysis, by relying on quantitative data as a precursor to new technological developments, can contribute to fully grasping current applications of each recycling technology and provide insights about their future development perspectives. Based on these premises, this paper performs a patent technology roadmap to enhance knowledge about prior, current, and future use of the main recycling technologies. The results show that recycling macro-categories have different technology maturity levels and growth potentials. Specifically, mechanical recycling is the most mature, with the lowest growth potential, while thermal and chemical recycling are in their growth stage and present remarkable future opportunities. Moreover, the analysis depicts several perspectives for future development on recycling technologies applications within different industries and underline inter- and intra-category dependencies, thus providing valuable information for practitioners and both academic and non-academic backgrounds researchers interested in the topic.


Sign in / Sign up

Export Citation Format

Share Document