scholarly journals The Interactive Design Approach for Aerodynamic Shape Design Optimisation of the Aegis UAV

Aerospace ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 42 ◽  
Author(s):  
Yousef Azabi ◽  
Al Savvaris ◽  
Timoleon Kipouros

In this work, an interactive optimisation framework—a combination of a low fidelity flow solver, Athena Vortex Lattice (AVL), and an interactive Multi-Objective Particle Swarm Optimisation (MOPSO)—is proposed for aerodynamic shape design optimisation of any aerial vehicle platform. This paper demonstrates the benefits of interactive optimisation—reduction of computational time with high optimality levels. Progress towards the most preferred solutions is made by having the Decision Maker (DM) periodically provide preference information once the MOPSO iterations are underway. By involving the DM within the optimisation process, the search is directed to the region of interest, which accelerates the process. The flexibility and efficiency of undertaking optimisation interactively have been demonstrated by comparing the interactive results with the non-interactive results of an optimum design case obtained using Multi-Objective Tabu Search (MOTS) for the Aegis UAV. The obtained results show the superiority of using an interactive approach for the aerodynamic shape design, compared to posteriori approaches. By carrying out the optimisation using interactive MOPSO it was shown to be possible to obtain similar results to non-interactive MOTS with only half the evaluations. Moreover, much of the usual complexity of post-data-analysis with posteriori approaches is avoided, since the DM is involved in the search process.

Author(s):  
Chaolei Zhang ◽  
Zhenping Feng

Achieving higher aerodynamic performance in terms of efficiency, pressure ratio or stable operation range has been of interest to both researchers and engineers in the field of turbomachinery. The design of optimal shaped aerodynamic configurations based on Computational Fluid Dynamics (CFD) and predefined targets can be obtained by using deterministic search algorithms, which need to calculate the first and second order sensitivities of the objective function with respect to the design variables. With the characteristics of quick and exact sensitivity analysis, as well as less computational resource requirement, the adjoint method has become a research focus in aerodynamic shape design optimization over the past decades. In this paper, a discrete adjoint solver was developed and validated based on an in-house flow solver code. Moreover, a turbomachinery cascade optimization design system was established by coupling the flow solver, the discrete adjoint solver, the parameterization technology, the grid generation technology and the gradient-based optimization algorithms. During the development process of the discrete adjoint solver, the automatic differentiation tool was used in order to ease the construction of the discrete adjoint system based on the flow solver code. However, in order to save the memory requirement and to reduce the computational cost, the automatic differentiation tool was used selectively to build the fundamental subroutines. The top-most module of the discrete adjoint solver was established based on the discrete adjoint theory and the automatic differentiation technology manually. The treatments of the discontinuity in the flow field, such as strong shocks, and the imposition of strong boundary conditions which were implemented in the adjoint solver were discussed in detail. At the same time, several technologies were used to accelerate convergence. Based on the optimization system, a typical 2D transonic turbomachinery cascade was optimized under the viscous flow environment. The optimization results were analyzed in detail. The validity and efficiency of the present optimization design system were proved.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 1413-1415
Author(s):  
Shigeru Obayashi ◽  
Takanori Tsukahara

2021 ◽  
Vol 26 (2) ◽  
pp. 27
Author(s):  
Alejandro Castellanos-Alvarez ◽  
Laura Cruz-Reyes ◽  
Eduardo Fernandez ◽  
Nelson Rangel-Valdez ◽  
Claudia Gómez-Santillán ◽  
...  

Most real-world problems require the optimization of multiple objective functions simultaneously, which can conflict with each other. The environment of these problems usually involves imprecise information derived from inaccurate measurements or the variability in decision-makers’ (DMs’) judgments and beliefs, which can lead to unsatisfactory solutions. The imperfect knowledge can be present either in objective functions, restrictions, or decision-maker’s preferences. These optimization problems have been solved using various techniques such as multi-objective evolutionary algorithms (MOEAs). This paper proposes a new MOEA called NSGA-III-P (non-nominated sorting genetic algorithm III with preferences). The main characteristic of NSGA-III-P is an ordinal multi-criteria classification method for preference integration to guide the algorithm to the region of interest given by the decision-maker’s preferences. Besides, the use of interval analysis allows the expression of preferences with imprecision. The experiments contrasted several versions of the proposed method with the original NSGA-III to analyze different selective pressure induced by the DM’s preferences. In these experiments, the algorithms solved three-objectives instances of the DTLZ problem. The obtained results showed a better approximation to the region of interest for a DM when its preferences are considered.


Sign in / Sign up

Export Citation Format

Share Document