scholarly journals Research on Loading Method of Tractor PTO Based on Dynamic Load Spectrum

Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 982
Author(s):  
Yu Wang ◽  
Ling Wang ◽  
Jianhua Zong ◽  
Dongxiao Lv ◽  
Shumao Wang

The torque load spectrum is an important basis for the strength design and durability test verification of tractor power take-off (PTO), and the performance and reliability of tractor PTO directly affect the quality and efficiency of agricultural operations. In this paper, taking the PTO torque load as the object, a PTO loading method based on the dynamic load spectrum acquired in the actual field work was proposed in this paper. Based on the Peak Over Threshold model, the extrapolation of the PTO load spectrum was realized, and the load spectrum throughout the whole life cycle was obtained. On the basis of this, the mobile tractor PTO loading test bench and Fuzzy-Proportional-Integral-Derivative (Fuzzy-PID) controller were developed to achieve the dynamic loading of the PTO load spectrum, and the dynamic characteristics were analyzed and verified by the simulation and laboratory test. The results showed that with the time domain extrapolation method, the load extreme value was expanded from (63.24, 469.50) to (60.88, 475.18), and the coverage was expanded by 1.98%. By comparing with the fitting results, statistical characteristics and rain flow counting results, the load spectrum extrapolation method was effective. In addition, the response time of simulation and laboratory test were 0.05s and 0.75s, respectively; the maximum error was 1.77% and 4.03%, respectively; and the goodness of fit was 16.78 N·m, which indicated that the PTO loading test bench, can accurately restore the dynamic loading of the tractor and the Fuzzy-PID controller had better accuracy and stability. It would provide a reference for the practical application of PTO load spectrum of the tractors.

Author(s):  
Deepak Kumar Lal ◽  
Ajit Kumar Barisal

Background: Due to the increasing demand for the electrical power and limitations of conventional energy to produce electricity. Methods: Now the Microgrid (MG) system based on alternative energy sources are used to provide electrical energy to fulfill the increasing demand. The power system frequency deviates from its nominal value when the generation differs the load demand. The paper presents, Load Frequency Control (LFC) of a hybrid power structure consisting of a reheat turbine thermal unit, hydropower generation unit and Distributed Generation (DG) resources. Results: The execution of the proposed fractional order Fuzzy proportional-integral-derivative (FO Fuzzy PID) controller is explored by comparing the results with different types of controllers such as PID, fractional order PID (FOPID) and Fuzzy PID controllers. The controller parameters are optimized with a novel application of Grasshopper Optimization Algorithm (GOA). The robustness of the proposed FO Fuzzy PID controller towards different loading, Step Load Perturbations (SLP) and random step change of wind power is tested. Further, the study is extended to an AC microgrid integrated three region thermal power systems. Conclusion: The performed time domain simulations results demonstrate the effectiveness of the proposed FO Fuzzy PID controller and show that it has better performance than that of PID, FOPID and Fuzzy PID controllers. The suggested approach is reached out to the more practical multi-region power system. Thus, the worthiness and adequacy of the proposed technique are verified effectively.


2021 ◽  
pp. 103564
Author(s):  
Wenjie Zeng ◽  
Qingfeng Jiang ◽  
Yinuo Liu ◽  
Shoujun Yan ◽  
Guangchun Zhang ◽  
...  

2014 ◽  
Vol 945-949 ◽  
pp. 2568-2572
Author(s):  
Si Yuan Wang ◽  
Guang Sheng Ren ◽  
Pan Nie

The test rig for hydro-pneumatic converter used in straddle type monorail vehicles was researched, and its electro-pneumatic proportional control system was set up and simulated based on AMESim/Simulink. Compared fuzzy-PID (Proportion Integral Derivative) controller with PID controller through fuzzy logic tool box in Simulink, the results indicate that, this electro-pneumatic proportional control system can meet design requirements better, and fuzzy-PID controller has higher accuracy and stability than PID controller.


Sign in / Sign up

Export Citation Format

Share Document