scholarly journals Effect of Modified Atmosphere Packaging (MAP) and UV-C Irradiation on Postharvest Quality of Red Raspberries

Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
David Gimeno ◽  
Jaime Gonzalez-Buesa ◽  
Rosa Oria ◽  
Maria Eugenia Venturini ◽  
Esther Arias

Red raspberries (Rubus idaeus L.) are highly appreciated by consumers. However, their postharvest shelf life scarcely exceeds 5 d under the refrigeration temperatures usually applied during commercialization, due to their high susceptibility to dehydration, softening and rot incidence. Thus, the objective of this study was to investigate the ability of UV-C radiation (UV1: 2 kJ m−2 and UV2: 4 kJ m−2), passive modified atmosphere packaging (MAP) with transmission rates (TR) for O2 and CO2 of 1805 mL d−1 and 1570 mL d−1 (MAP1), and 902 mL d−1 and 785 mL d−1 (MAP2), respectively, and the combination of both technologies to prolong raspberries’ shelf life at 6 °C. Their influence on respiration, physicochemical parameters, and microbiological and nutritional quality was assessed during 12 d of storage. The combination of 4 kJ m−2 UV-C radiation and a packaging film with O2 and CO2 transmission rates of 902 mL d−1 and 785 mL d−1, respectively, produced a synergistic effect against rot development, delaying senescence of the fruit. The UV2MAP2 and MAP2 samples only showed 1.66% rot incidence after 8 d of storage. The UV2MAP2 samples also had higher bioactive content (1.76 g kg−1 of gallic acid equivalents (GAE), 1.08 g kg−1 of catechin equivalents (CE) and 0.32 g kg−1 of cyanidin 3-O-glucoside equivalents (CGE)) than the control samples at the end of their shelf life. Moreover, the mass loss was minimal (0.56%), and fruit color and firmness were maintained during shelf life. However, the rest of the batches were not suitable for commercialization after 4 d due to excessive mold development.

1996 ◽  
Vol 121 (4) ◽  
pp. 722-729 ◽  
Author(s):  
Kevin I. Segall ◽  
Martin G. Scanlon

The first goal of this study was to determine the packaging film O2 permeability required to maintain a steady-state O2 concentration of 3% in modified-atmosphere packaging (MAP) of minimally processed romaine lettuce (Lactuca sativa L.). The second goal of the study was to determine the extent to which MAP could preserve lettuce quality and consequently extend product shelf life. Oxygen consumption rates of commercially prepared lettuce samples were determined in a closed system for each of three atmospheres (3% O2 combined with either 6%, 10%, or 14% CO2). Enzymatic, quadratic, and linear mathematical models were compared to determine which best described the respiratory data. The linear model was the most suitable and was used to predict the O2 consumption rate of the minimally processed romaine lettuce under the desired package headspace gas concentrations. The predicted O2 consumption rate was used to calculate the necessary O2 permeability for the packaging film. Packages (21.6 × 25.4 cm) were constructed from a polypropylene-polyethylene-laminate film with the appropriate O2 permeability. Packaged samples were stored under three modified atmospheres (MAs) (3% O2 combined with either 6%, 10%, or 14% CO2) for 20 days, and headspace gas concentrations, lettuce appearance, and color were evaluated every other day. Growth of pectinolytic and lactic acid bacteria was also studied. The O2 consumption rate of the lettuce decreased with increasing CO2 levels. The O2 levels in the MA packages equilibrated at 7% to 11%. Compared to a control atmosphere of air, MAP delayed the development of tissue discoloration. Preliminary results indicated no effect of MAP on microbial growth. Of the three CO2 levels, 10% was slightly more effective than 6% and 14%. Critical choice of packaging permeabilities combined with MAP maintained the quality of minimally processed romaine lettuce and thereby increased shelf life by about 50%.


2014 ◽  
Vol 32 (5) ◽  
pp. 655-665 ◽  
Author(s):  
Me-Hea Park ◽  
Ji-Weon Choi ◽  
Yong-Bum Kim ◽  
Myeong-Hae Kim ◽  
Hee-Yeon Won ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3222
Author(s):  
César A. Lázaro ◽  
Maria Lúcia G. Monteiro ◽  
Carlos A. Conte-Junior

This study investigated the isolated effect of modified atmosphere packaging (MAP; 50% CO2 and 50% N2) and ultraviolet radiation (UV; 0.30 J/cm2) as well as their combined (MAP/UV) effect on reduction of Salmonella typhimurium and Escherichia coli O157:H7, biogenic amines (BA), and on shelf life of tilapia fillets stored at 4 ± 1 °C for 10 days. UV samples had the highest reduction of S. typhimurium (1.13 log colony forming units/g; CFU/g) and E. coli O157:H7 (0.70 log CFU/g). MAP and MAP/UV reduced the growth of S. typhimurium in 0.50 log CFU/g and did not affect the growth of E. coli O157:H7. UV, MAP, and MAP/UV increased lag phase and/or generation time of all evaluated bacterial groups, decreased pH values, ammonia formation, texture changes, and, in general, the BA formation throughout storage period, and, therefore, UV, MAP, and MAP/UV extended the shelf life for two, three, and at least five days, respectively. MAP/UV, MAP, and UV decreased redness, MAP/UV and MAP increased yellowness and lipid oxidation, while UV did not affect it. MAP/UV demonstrated promising results for shelf life extension; however, different gas ratios in combination with other ultraviolet radiation type C (UV-C) doses should be investigated to reach the highest microbiological safety and maintenance of the overall quality of tilapia fillets.


2002 ◽  
Vol 24 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Chang-Kui Ding ◽  
Kazuo Chachin ◽  
Yoshinori Ueda ◽  
Yoshihiro Imahori ◽  
Chien Y. Wang

Sign in / Sign up

Export Citation Format

Share Document