scholarly journals Miscanthus Biochar had Limited Effects on Soil Physical Properties, Microbial Biomass, and Grain Yield in a Four-Year Field Experiment in Norway

Agriculture ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 171 ◽  
Author(s):  
Adam O’Toole ◽  
Christophe Moni ◽  
Simon Weldon ◽  
Anne Schols ◽  
Monique Carnol ◽  
...  

The application of biochar to soils is a promising technique for increasing soil organic C and offsetting GHG emissions. However, large-scale adoption by farmers will likely require the proof of its utility to improve plant growth and soil quality. In this context, we conducted a four-year field experiment between October 2010 to October 2014 on a fertile silty clay loam Albeluvisol in Norway to assess the impact of biochar on soil physical properties, soil microbial biomass, and oat and barley yield. The following treatments were included: Control (soil), miscanthus biochar 8 t C ha−1 (BC8), miscanthus straw feedstock 8 t C ha−1 (MC8), and miscanthus biochar 25 t C ha−1 (BC25). Average volumetric water content at field capacity was significantly higher in BC25 when compared to the control due to changes in BD and total porosity. The biochar amendment had no effect on soil aggregate (2–6 mm) stability, pore size distribution, penetration resistance, soil microbial biomass C and N, and basal respiration. Biochar did not alter crop yields of oat and barley during the four growing seasons. In order to realize biochar’s climate mitigation potential, we suggest future research and development efforts should focus on improving the agronomic utility of biochar in engineered fertilizer and soil amendment products.

Soil Research ◽  
2011 ◽  
Vol 49 (4) ◽  
pp. 287 ◽  
Author(s):  
V. Gonzalez-Quiñones ◽  
E. A. Stockdale ◽  
N. C. Banning ◽  
F. C. Hoyle ◽  
Y. Sawada ◽  
...  

Since 1970, measurement of the soil microbial biomass (SMB) has been widely adopted as a relatively simple means of assessing the impact of environmental and anthropogenic change on soil microorganisms. The SMB is living and dynamic, and its activity is responsible for the regulation of organic matter transformations and associated energy and nutrient cycling in soil. At a gross level, an increase in SMB is considered beneficial, while a decline in SMB may be considered detrimental if this leads to a decline in biological function. However, absolute SMB values are more difficult to interpret. Target or reference values of SMB are needed for soil quality assessments and to allow ameliorative action to be taken at an appropriate time. However, critical values have not yet been successfully identified for SMB. This paper provides a conceptual framework which outlines how SMB values could be interpreted and measured, with examples provided within an Australian context.


2017 ◽  
Vol 50 (1) ◽  
pp. 57-63 ◽  
Author(s):  
L. M. Polyanskaya ◽  
A. L. Stepanov ◽  
K. V. Chakmazyan

1998 ◽  
Vol 78 (2) ◽  
pp. 283-290 ◽  
Author(s):  
P. Rochette ◽  
E. G. Gregorich

Application of manure and fertilizer affects the rate and extent of mineralization and sequestration of C in soil. The objective of this study was to determine the effects of 3 yr of application of N fertilizer and different manure amendments on CO2 evolution and the dynamics of soil microbial biomass and soluble C in the field. Soil respiration, soluble organic C and microbial biomass C were measured at intervals over the growing season in maize soils amended with stockpiled or rotted manure, N fertilizer (200 kg N ha−1) and with no amendments (control). Manure amendments increased soil respiration and levels of soluble organic C and microbial biomass C by a factor of 2 to 3 compared with the control, whereas the N fertilizer had little effect on any parameter. Soil temperature explained most of the variations in CO2 flux (78 to 95%) in each treatment, but data from all treatments could not be fitted to a unique relationship. Increases in CO2 emission and soluble C resulting from manure amendments were strongly correlated (r2 = 0.75) with soil temperature. This observation confirms that soluble C is an active C pool affected by biological activity. The positive correlation between soluble organic C and soil temperature also suggests that production of soluble C increases more than mineralization of soluble C as temperature increases. The total manure-derived CO2-C was equivalent to 52% of the applied stockpiled-manure C and 67% of the applied rotted-manure C. Estimates of average turnover rates of microbial biomass ranged between 0.72 and 1.22 yr−1 and were lowest in manured soils. Manured soils also had large quantities of soluble C with a slower turnover rate than that in either fertilized or unamended soils. Key words: Soil respiration, greenhouse gas, soil carbon


2013 ◽  
Vol 43 (9) ◽  
pp. 777-784 ◽  
Author(s):  
Ya-Lin Hu ◽  
Kangho Jung ◽  
De-Hui Zeng ◽  
Scott X. Chang

Chronic nitrogen (N) and (or) sulfur (S) deposition to boreal forests in the Athabasca oil sands region (AOSR) in Alberta, Canada, has been caused by oil sands mining and extraction/upgrading activities. It is important that we understand the response of microbial community function to chronic N and S deposition as microbial populations mediate soil carbon (C) and N cycles and affect ecosystem resilience. To evaluate the impact of N and (or) S deposition on soil microbial community functions, we conducted a simulated N and S deposition experiment in a boreal mixedwood forest with the following four treatments: control (CK), N addition (+N, 30 kg N·ha−1 as NH4NO3), S addition (+S, 30 kg S·ha−1 as NaSO4), and N plus S addition (+NS, 30 kg N·ha−1 + 30 kg S·ha−1), from 2006 to 2010. Nitrogen and (or) S deposition did not change soil organic carbon, total N, dissolved organic C and N, or soil microbial biomass C and N. Soil microbial community-level physiological profiles, however, were strongly affected by 5 years of N and (or) S addition. Soil β-glucosidase activity in the +NS treatment was greater than that in the +S treatment, and S addition decreased soil arylsulfatase; however, urease and dehydrogenase activities were not affected by the simulated N and (or) S deposition. Our data suggested that N and (or) S deposition strongly affected soil microbial community functions and enzymatic activities without changing soil microbial biomass in the studied boreal forest.


1999 ◽  
Vol 79 (4) ◽  
pp. 507-520 ◽  
Author(s):  
M. R. Carter ◽  
E. G. Gregorich ◽  
D. A. Angers ◽  
M. H. Beare ◽  
G. P. Sparling ◽  
...  

Soil microbial biomass (SMB) measurements are often used in soil biological analysis; however, their interpretation can be problematic. In this review, both the limitations and benefits of indirect (both CHCl3 fumigation incubation and fumigation extraction, and substrate-induced respiration) SMB measurements are outlined, along with their value and interpretation as attributes or indicators to assess some soil quality (SQ) functions (e.g., enhance plant growth, maintain aggregation, regulate energy) for mainly humid, temperate soils, with specific emphasis on research conducted in eastern Canada and New Zealand. Indirect SMB methods are subject to limitations analogous to "soil test" procedures (e.g., soil sampling and handling, water content, storage prior to treatment), and also the difficulties with establishing an acceptable "control" and fraction (i.e., k value) of SMB mineralized or extracted. In many cases, such limitations present a need for some degree of standardization (e.g., pre-conditions of 7- to 10-d incubation at 25°C and −0.001 MPa water potential) prior to SMB measurement. However, for SQ assessment, where "comparative" rather than "absolute" values of SMB are often of interest, use of commonly derived k values seem appropriate for surface soils.Soil ecological factors govern SMB and often underlie much of the spatial and temporal variation in SMB. Plant species composition, mainly through net primary productivity and litter quality, can affect SMB measurements along with trophic cascades in soil, where interactions among soil organisms can influence microbial activity. Benefits of SMB measurements relate mainly to the assessment of both soil C turnover and management induced changes in organic matter. The combination of SMB and δ13C to elucidate the transformations and fate of organic C in cropping and soil management systems has also shown that both temporal and spatial redistribution of C inputs, and soil type (i.e., particle size distribution) are dominant factors in turnover and nutrient flow through the SMB.For SQ assessment, SMB is not a useful indicator for the function of soil as a "medium for plant growth" in regard to plant productivity for intensively farmed temperate soils. For the function of soil to "maintain aggregation", where SMB is one agent only of a multi-faceted process, the relationship between SMB and soil aggregation is not always present and tends to be site-specific. In regard to the "regulate energy" soil function, SMB is related to some degree with decomposition and mineralization processes. The main role of SMB for SQ assessment is to serve within a minimum data set of other indicators (e.g., macroorganic C) to monitor soil organic C storage and change. Key words: Soil microbial biomass, humid climate, soil quality


Sign in / Sign up

Export Citation Format

Share Document