scholarly journals Effects of Environmental Drivers and Agricultural Management on Soil CO2 and N2O Emissions

Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 54
Author(s):  
Márton Dencső ◽  
Ágota Horel ◽  
Igor Bogunovic ◽  
Eszter Tóth

Understanding the roles of natural drivers and anthropogenic activities in greenhouse gas (GHG) emissions of arable fields is crucial for adopting the most appropriate agricultural management. This study investigated the effect of two tillage treatments of mouldboard ploughing (MP) and no-tillage (NT), and the environmental factors (soil water content and temperature, carbon content and nitrogen forms) on soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions. The research was conducted on chernozem soil under winter wheat cultivation. Besides field monitoring, several laboratory experiments took place to examine the effects of environmental drivers and fertilization management on soil GHG emissions. We observed no significant difference between the CO2 emission of MP and NT during a full year period. Nevertheless, significant differences were found in the sub-periods (more particularly during vegetation and then after harvest). NT had higher CO2 emission than MP in all laboratory experiments (p < 0.001) and in the after harvest period of the field trial, measured on bare soil (p < 0.0001). NT had significantly higher N2O emission both under laboratory (p < 0.0001) and field conditions (p < 0.0081). Different fertilization showed no distinguishable effect on N2O emission in the laboratory. This study confirms that N2O emission of the arable field depended more on soil water content than soil temperature, and vice-versa for CO2 emission.

2017 ◽  
Vol 14 (18) ◽  
pp. 4195-4208 ◽  
Author(s):  
Sílvia Poblador ◽  
Anna Lupon ◽  
Santiago Sabaté ◽  
Francesc Sabater

Abstract. Riparian zones play a fundamental role in regulating the amount of carbon (C) and nitrogen (N) that is exported from catchments. However, C and N removal via soil gaseous pathways can influence local budgets of greenhouse gas (GHG) emissions and contribute to climate change. Over a year, we quantified soil effluxes of carbon dioxide (CO2) and nitrous oxide (N2O) from a Mediterranean riparian forest in order to understand the role of these ecosystems on catchment GHG emissions. In addition, we evaluated the main soil microbial processes that produce GHG (mineralization, nitrification, and denitrification) and how changes in soil properties can modify the GHG production over time and space. Riparian soils emitted larger amounts of CO2 (1.2–10 g C m−2 d−1) than N2O (0.001–0.2 mg N m−2 d−1) to the atmosphere attributed to high respiration and low denitrification rates. Both CO2 and N2O emissions showed a marked (but antagonistic) spatial gradient as a result of variations in soil water content across the riparian zone. Deep groundwater tables fueled large soil CO2 effluxes near the hillslope, while N2O emissions were higher in the wet zones adjacent to the stream channel. However, both CO2 and N2O emissions peaked after spring rewetting events, when optimal conditions of soil water content, temperature, and N availability favor microbial respiration, nitrification, and denitrification. Overall, our results highlight the role of water availability on riparian soil biogeochemistry and GHG emissions and suggest that climate change alterations in hydrologic regimes can affect the microbial processes that produce GHG as well as the contribution of these systems to regional and global biogeochemical cycles.


2012 ◽  
Vol 9 (11) ◽  
pp. 16565-16588 ◽  
Author(s):  
S. Castaldi ◽  
T. Bertolini ◽  
A. Valente ◽  
T. Chiti ◽  
R. Valentini

Abstract. Most recently atmospheric studies have evidenced the imprint of large N2O sources in tropical/subtropical lands. This source might be attributed to agricultural areas as well as to natural humid ecosystems. The uncertainty related to both sources is very high, due to the paucity of data and small frequency of sampling in tropical studies. This is particularly relevant for the African continent. The principal objective of this work was to quantify the annual budget of N2O emissions in an African tropical rain forest. Soil N2O emissions were measured over 19 months in Ghana, National Park of Ankasa, in upland and lowland areas, for a total of 119 days of observation. The calculated annual average emission was 2.33 ± 0.20 kg N-N2O ha−1yr−1, taking into account the proportion of upland vs. lowland, as the two areas showed significantly different fluxes, the lowland being characterized by lower N2O emissions. N2O fluxes peaked between June and August and were significantly correlated with soil respiration on a daily and monthly basis. No clear correlation was found in the upland areas between N2O fluxes and soil water content or rain whereas in the lowland soil water content concurred with soil respiration in determining N2O flux variability. The N2O source strength calculated in this study, very close to those reported for the other two available studies in African rain forests and to the estimated mean derived from worldwide studies in humid tropical forests (2.96 ± 2.0 kg N-N2O ha−1 yr−1), supports the concept that tropical humid forests represent the strongest natural source of N2O emissions, most probably the strongest source of N2O in the African continent.


2002 ◽  
Vol 6 (3) ◽  
pp. 325-338 ◽  
Author(s):  
S. E. Machefert ◽  
N. B. Dise ◽  
K. W. T. Goulding ◽  
P.G. Whitehead

Abstract. The results of a literature study examining quantitative estimates of N2O emission rates are presented for a range of land-uses across Europe. The analysis shows that the highest N2O emission rates are for agricultural lands compared to forests and grasslands. The main factors regulating these rates are available mineral nitrogen, soil temperature, soil water content and the available labile organic compounds. These controls operate across different time-scales, all must exceed a certain threshold for N2O emission to occur. The results support the need for an emission factor function of land-use and climate within models describing nitrogen dynamics in catchments. This would allow the assessment of the net N2O emission within catchments in terms of current levels and potential changes associated with climate variability, climate change and land use change. Keywords: nitrous oxide, soil water content, inorganic N, soil temperature, ecosystems, land-use management, soil type


Soil Research ◽  
2018 ◽  
Vol 56 (8) ◽  
pp. 810 ◽  
Author(s):  
Iris Vogeler ◽  
Rogerio Cichota

Despite the importance of soil physical properties on water infiltration and redistribution, little is known about the effect of variability in soil properties and its consequent effect on contaminant loss pathways. To investigate the effects of uncertainty and heterogeneity in measured soil physical parameters on the simulated movement of water and the prediction of nitrous oxide (N2O) emissions, we set up the Agricultural Production Systems sIMulator (APSIM) for different soil types in three different regions of New Zealand: the Te Kowhai silt loam and the Horotiu silt loam in the Waikato region, and the Templeton silt loam in the Canterbury region, and the Otokia silt loam and the Wingatui silt loam in the Otago region. For each of the soil types, various measured soil profile descriptions, as well as those from a national soils database (S-map) were used when available. In addition, three different soil water models in APSIM with different complexities (SWIM2, SWIM3, and SoilWat) were evaluated. Model outputs were compared with temporal soil water content measurements within the top 75mm at the various experimental sites. Results show that the profile description, as well as the soil water model used affected the prediction accuracy of soil water content. The smallest difference between soil profile descriptions was found for the Templeton soil series, where the model efficiency (NSE) was positive for all soil profile descriptions, and the RMSE ranged from 0.055 to 0.069m3/m3. The greatest difference was found for the Te Kowhai soil, where only one of the descriptions showed a positive NSE, and the other two profile descriptions overestimated measured topsoil water contents. Furthermore, it was shown that the soil profile description highly affects N2O emissions from urinary N deposited during animal grazing. However, the relative difference between the emissions was not always related to the accuracy of the measured soil water content, with soil organic carbon content also affecting emissions.


Soil Research ◽  
2012 ◽  
Vol 50 (7) ◽  
pp. 596 ◽  
Author(s):  
Xiaodong Huang ◽  
Peter Grace ◽  
Keith Weier ◽  
Kerrie Mengersen

Time series regression models were used to examine the influence of environmental factors (soil water content and soil temperature) on the emissions of nitrous oxide (N2O) from subtropical soils, by taking into account temporal lagged environmental factors, autoregressive processes, and seasonality for three horticultural crops in a subtropical region of Australia. Fluxes of N2O, soil water content, and soil temperature were determined simultaneously on a weekly basis over a 12-month period in South East Queensland. Annual N2O emissions for soils under mango, pineapple, and custard apple were 1590, 1156, and 2038 g N2O-N/ha, respectively, with most emissions attributed to nitrification. The N2O-N emitted from the pineapple and custard apple crops was equivalent to 0.26 and 2.22%, respectively, of the applied mineral N. The change in soil water content was the key variable for describing N2O emissions at the weekly time-scale, with soil temperature at a lag of 1 month having a significant influence on average N2O emissions (averaged) at the monthly time-scale across the three crops. After accounting for soil temperature and soil water content, both the weekly and monthly time series regression models exhibited significant autocorrelation at lags of 1–2 weeks and 1–2 months, and significant seasonality for weekly N2O emissions for mango crop and for monthly N2O emissions for mango and custard apple crops in this location over this time-frame. Time series regression models can explain a higher percentage of the temporal variation of N2O emission compared with simple regression models using soil temperature and soil water content as drivers. Taking into account seasonal variability and temporal persistence in N2O emissions associated with soil water content and soil temperature may lead to a reduction in the uncertainty surrounding estimates of N2O emissions based on limited sampling effort.


2013 ◽  
Vol 10 (6) ◽  
pp. 4179-4187 ◽  
Author(s):  
S. Castaldi ◽  
T. Bertolini ◽  
A. Valente ◽  
T. Chiti ◽  
R. Valentini

Abstract. Recent atmospheric studies have evidenced the imprint of large N2O sources in tropical/subtropical lands. This source might be attributed to agricultural areas as well as to natural humid ecosystems. The uncertainty related to both sources is very high, due to the scarcity of data and low frequency of sampling in tropical studies, especially for the African continent. The principal objective of this work was to quantify the annual budget of N2O emissions in an African tropical rain forest. Soil N2O emissions were measured over 19 months in Ghana, National Park of Ankasa, in uphill and downhill areas, for a total of 119 days of observation. The calculated annual average emission was 2.33 ± 0.20 kg N-N2O ha−1 yr−1, taking into account the proportion of uphill vs. downhill areas, the latter being characterized by lower N2O emissions. N2O fluxes peaked between June and August and were significantly correlated with soil respiration on a daily and monthly basis. No clear correlation was found in the uphill area between N2O fluxes and soil water content or rain, whereas in the downhill area soil water content concurred with soil respiration in determining N2O flux variability. The N2O source strength calculated in this study is very close to those reported for the other two available studies in African rain forests and to the estimated mean derived from worldwide studies in humid tropical forests (2.81 ± 2.02 kg N-N2O ha−1 yr−1).


2021 ◽  
Author(s):  
Sandeep Thayamkottu ◽  
Jaan Pärn ◽  
Mohammad Bahram ◽  
Mikk Espenberg ◽  
Leho Tedersoo ◽  
...  

&lt;p&gt;There is a general consensus that peatlands are the source of about 10% of the global CO&lt;sub&gt;2&lt;/sub&gt;, CH&lt;sub&gt;4&lt;/sub&gt; and N&lt;sub&gt;2&lt;/sub&gt;O greenhouse gas (GHG) emissions. Yet, our knowledge about underlying processes and environmental factors that regulate the GHG are limited. Here, we found that the GHG balance of CO&lt;sub&gt;2&lt;/sub&gt;, CH&lt;sub&gt;4&lt;/sub&gt; and N&lt;sub&gt;2&lt;/sub&gt;O in 48 open peatland sites on five continents can be predicted by a model that incorporates soil water content (SWC) and archaeal abundance. We used our global database (2011&amp;#8211;2019) on peat characteristics and field-measured soil respiration (ER), CH&lt;sub&gt;4&lt;/sub&gt; and N&lt;sub&gt;2&lt;/sub&gt;O emissions. Furthermore, we used the gross primary productivity (GPP) dataset by Running, Mu &amp; Zhao (2015) on the basis of satellite data from the Moderate Resolution Imaging Spectrometer (MODIS) sensors alongside the ER to derive net ecosystem exchange (NEE) of carbon. The GHG balance follows SWC along a bell-shaped curve and increases with archaeal abundance and decomposition rate of peat-forming plant species. Thus, the net GHG emission peaks at intermediate SWC. These factors combined explains 61.9% (adjusted R&lt;sup&gt;2&lt;/sup&gt; = 0.587) of GHG balance and most of this variance is made up by the NEE of carbon (adjusted R&lt;sup&gt;2&lt;/sup&gt; = 0.97).&lt;/p&gt;


Author(s):  
Nikos Markos ◽  
Kalliopi Radoglou

Abstract Τhe eddy covariance technique provides reliable ecosystem-level ET measurements. These measurements, when combined with models and satellite products, could offer high spatiotemporal coverage and valuable mechanistic interpretation of the underlying processes. This study address one-year eddy covariance measurements from a Robinia pseudoacacia site in Northern Greece and remote sensing products, we (a) provide a medium-term description of daily ET fluxes for a R. pseudoacacia plantation in a degraded land, (b) assess the contribution of environmental drivers (e.g., net radiation, temperature etc) on ET and (c) evaluate a simple satellite and meteorological driven model for larger-scale applications, based on the land surface water index (LSWI) and the FAO approach. R. pseudoacacia was found to have quite high water consumption, especially during leaf expansion. Net radiation and soil water content had the greatest effect on ecosystem evapotranspiration. LSWI was found to be correlated with both soil water content and evapotranspiration. Its use as an index for water limitation in models lead to high accuracy when compared to ET measurements. Our results (a) provide a significant contribution to the assessment of R. pseudoacacia ecophysiology and (b) highlight the potential of accurate ecosystem ET estimation with simple modeling approaches.


Sign in / Sign up

Export Citation Format

Share Document