scholarly journals Phosphogypsum Organic, a Byproduct from Rare-Earth Metals Processing, Improves Plant and Soil

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2561
Author(s):  
Mohamed Musa Hanafi ◽  
Parisa Azizi ◽  
Jeyanny Vijayanathan

Phosphogypsum organic (PG organic) is a soil conditioner, derived from residues, water leach purification (WLP) and neutralisation underflow (NUF) from rare-earth metals processing in combination with composted organic material. There was no report available with regards to the effectiveness of this byproduct for crops improvement in a sandy soil texture. Therefore, a field trial involving a multi-crop was conducted by the addition of PG organic on a sandy texture soil for 23-month period. Guinea grass or guinea grass intercropping with teak wood trees, corn and kenaf showed an improvement in cumulative fresh yield in plot treated with PG organic either with a half- or full-fertilizer recommended rate for the respective crop as compared to control. The same trend was also observed in teak wood trees in hole planting systems and pandan coconut seedlings in the polybags. Application of PG organic in each season showed a consistently higher cumulative fresh yield or yield for certain crop types due to soil ability to maintain the soil pH buffering capacity (pH 5.8–6.0). Therefore, the application of PG organic as soil conditioner promotes plant growth and development due to the improvement of soil condition by creating suitable ecosystem for nutrients absorption by roots.

1979 ◽  
Vol 40 (C5) ◽  
pp. C5-260-C5-261 ◽  
Author(s):  
M. Müller ◽  
E. Huber ◽  
H.-J. Güntherodt

1980 ◽  
Vol 41 (C1) ◽  
pp. C1-25-C1-31 ◽  
Author(s):  
N. S. Dixon ◽  
L. S. Fritz ◽  
Y. Mahmud ◽  
B. B. Triplett ◽  
S. S. Hanna ◽  
...  

2015 ◽  
Vol 53 (9) ◽  
pp. 637-641
Author(s):  
Chul-Woo Nam ◽  
Kyung-Ho Park ◽  
Hyun-Ho Kim ◽  
Jin-Tae Park

1963 ◽  
Vol 79 (2) ◽  
pp. 263-293 ◽  
Author(s):  
E.M. Savitskii ◽  
V.F. Terekhova ◽  
O.P. Naumkin

1964 ◽  
Vol 82 (3) ◽  
pp. 449-498 ◽  
Author(s):  
Konstantin P. Belov ◽  
R.Z. Levitin ◽  
S.A. Nikitin
Keyword(s):  

2018 ◽  
Vol 84 (11) ◽  
pp. 9-14
Author(s):  
E. S. Koshel ◽  
V. B. Baranovskaya ◽  
M. S. Doronina

The analytical capabilities of arc atomic emission determination of As, Bi, Sb, Cu, Te in rare earth metals (REM) and their oxides after preparatory group concentration using S,N-containing heterochain polymer sorbent are studied on a high-resolution spectrometer “Grand- Extra” (“WMC-Optoelectron-ics” company, Russia). Sorption kinetics and dependence of the degree of the impurity extraction on the solution acidity are analyzed to specify conditions of sorption concentration. To optimize the procedure of arc atomic emission determination of As, Bi, Sb, Cu, and Te various schemes of their sorption preconcentration and subsequent processing of the resulted concentrate with the addition of a collector at different stages of the sorption process have been considered. Graphite powder is used as a collector in analysis of rare earth oxides due to universality and relative simplicity of the emission spectrum. Conditions of analysis and parameters of the spectrometer that affect the analytical signal (mass and composition of the sample, shape and size of the electrodes, current intensity and generator operation mode, interelectrode spacing, wavelengths of the analytical lines) are chosen. The evaporation curves of the determinable impurities were studied and the exposure time of As, Bi, Sb, Cu, and Te in the resulted sorption concentrate was determined. Correctness of the obtained results was evaluated using standard samples of the composition and in comparisons between methods. The results of the study are used to develop a method of arc chemical-atomic emission analysis of yttrium, gadolinium, neodymium, europium, scandium and their oxides in a concentration range of n x (10-2 - 10-5) wt.%.


2018 ◽  
Vol 17 (8) ◽  
pp. 2001-2009
Author(s):  
Tatjana Juzsakova ◽  
Akos Redey ◽  
Le Phuoc Cuong ◽  
Zsofia Kovacs ◽  
Tamas Frater ◽  
...  

2020 ◽  
pp. 25-34
Author(s):  
V. P. Ermakova ◽  
◽  
S. Yu. Melchakov ◽  
V. G. Smirnova ◽  
L. A. Ovchinnikova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document