scholarly journals Prospects of Bioenergy Cropping Systems for A More Social-Ecologically Sound Bioeconomy

Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 605 ◽  
Author(s):  
Von Cossel ◽  
Wagner ◽  
Lask ◽  
Magenau ◽  
Bauerle ◽  
...  

The growing bioeconomy will require a greater supply of biomass in the future for both bioenergy and bio-based products. Today, many bioenergy cropping systems (BCS) are suboptimal due to either social-ecological threats or technical limitations. In addition, the competition for land between bioenergy-crop cultivation, food-crop cultivation, and biodiversity conservation is expected to increase as a result of both continuous world population growth and expected severe climate change effects. This study investigates how BCS can become more social-ecologically sustainable in future. It brings together expert opinions from the fields of agronomy, economics, meteorology, and geography. Potential solutions to the following five main requirements for a more holistically sustainable supply of biomass are summarized: (i) bioenergy-crop cultivation should provide a beneficial social-ecological contribution, such as an increase in both biodiversity and landscape aesthetics, (ii) bioenergy crops should be cultivated on marginal agricultural land so as not to compete with food-crop production, (iii) BCS need to be resilient in the face of projected severe climate change effects, (iv) BCS should foster rural development and support the vast number of small-scale family farmers, managing about 80% of agricultural land and natural resources globally, and (v) bioenergy-crop cultivation must be planned and implemented systematically, using holistic approaches. Further research activities and policy incentives should not only consider the economic potential of bioenergy-crop cultivation, but also aspects of biodiversity, soil fertility, and climate change adaptation specific to site conditions and the given social context. This will help to adapt existing agricultural systems in a changing world and foster the development of a more social-ecologically sustainable bioeconomy.

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1658
Author(s):  
Kenneth J. Moore ◽  
Catherine Louise Kling ◽  
D. Raj Raman

Bioenergy cropping systems afford the prospect to provide a more socially and ecologically sustainable bioeconomy. By creating opportunities to diversify agroecosystems, bioenergy crops can be used to fulfill multiple functions in addition to providing more environmentally benign fuels. Bioenergy crops can be assembled into cropping systems that provide both food and energy and which also provide cleaner water, improved soil quality, increased carbon sequestration, and increased biological diversity. In so doing, they improve the resilience of agroecosystems and reduce risks associated with climate change. Beyond the farmgate, bioenergy crops can improve the economic prospects of rural communities by creating new jobs and providing opportunities for local investment.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 451
Author(s):  
Moritz von Cossel ◽  
Lorena Agra Pereira ◽  
Iris Lewandowski

The global demand for plant biomass to provide bioenergy and heat is continuously increasing because of a growing interest among many industrialized and developing countries towards climate sound and renewable energy supply. The exacerbation of land-use conflicts proliferates social-ecological demands on future bioenergy cropping systems. Perennial herbaceous wild plant mixtures (WPMs) represent an approach to providing social-ecologically more sustainably produced biogas substrate that has gained increasing public and political interest only in recent years. The focus of this study lies on three perennial wild plant species (WPS) that usually dominate the biomass yield performance of WPM cultivation. These WPS were compared with established biogas crops in terms of their substrate-specific methane yield (SMY) and lignocellulosic composition. The plant samples were investigated in a small-scale mesophilic discontinuous biogas batch test for determining the SMY. All WPS were found to have significantly lower SMY (241.5–248.5 lN kgVS−1) than maize (337.5 lN kgVS−1). This was attributed to higher contents of lignin (9.7–12.8% of dry matter) as well as lower contents of hemicellulose (9.9–11.5% of dry matter) in the WPS. Only minor, non-significant differences to cup plant and Virginia mallow were observed. Thus, when planning WPS as a diversification measure in biogas cropping systems, their lower SMY should be considered.


2019 ◽  
Vol 77 (1) ◽  
pp. 40-45
Author(s):  
Avigdor Abelson

Abstract Following a series of mass-bleaching events that have seriously degraded coral reefs, notably the Great Barrier Reef of Australia, a common narrative is now dominating the discourse, according to which “the only sure way to save the world’s coral reefs is climate change mitigation”. However, climate change is not a sole stressor. Most coral reefs around the world are threatened by a myriad of local stressors, including overfishing, destructive fishing, untreated sewage, agriculture effluents (nutrients and pesticides), and siltation due to deforestation. Reefs will not survive the severe effects of this plethora of stressors while waiting until we mitigate climate change. In order to safeguard reefs, we need to adopt a new narrative—“there are diverse ways in which we can improve the chances of saving coral reefs”—by acting now to: (i) improve their local protection and marine protected area networks, (ii) alleviate their critical local stressors, (iii) restore degraded and damaged reefs, and (iv) promote reef resilience and adaptation (e.g. adaptation networks, assisted evolution) to the changing conditions, notably climate change effects. It is time for us to move on from the impractical goals of the climate change narrative (“interventions beyond our field of expertise”) to building up resilience and adaptation of social-ecological systems of coral reefs.


2017 ◽  
Vol 30 (7) ◽  
pp. 2535-2557 ◽  
Author(s):  
M. Wang ◽  
M. Wagner ◽  
G. Miguez-Macho ◽  
Y. Kamarianakis ◽  
A. Mahalov ◽  
...  

Large-scale cultivation of perennial bioenergy crops (e.g., miscanthus and switchgrass) offers unique opportunities to mitigate climate change through avoided fossil fuel use and associated greenhouse gas reduction. Although conversion of existing agriculturally intensive lands (e.g., maize and soy) to perennial bioenergy cropping systems has been shown to reduce near-surface temperatures, unintended consequences on natural water resources via depletion of soil moisture may offset these benefits. The hydroclimatic impacts associated with perennial bioenergy crop expansion over the contiguous United States are quantified using the Weather Research and Forecasting Model dynamically coupled to a land surface model (LSM). A suite of continuous (2000–09) medium-range resolution (20-km grid spacing) ensemble-based simulations is conducted using seasonally evolving biophysical representation of perennial bioenergy cropping systems within the LSM based on observational data. Deployment is carried out only over suitable abandoned and degraded farmlands to avoid competition with existing food cropping systems. Results show that near-surface cooling (locally, up to 5°C) is greatest during the growing season over portions of the central United States. For some regions, principal impacts are restricted to a reduction in near-surface temperature (e.g., eastern portions of the United States), whereas for other regions deployment leads to soil moisture reduction in excess of 0.15–0.2 m3 m−3 during the simulated 10-yr period (e.g., western Great Plains). This reduction (~25%–30% of available soil moisture) manifests as a progressively decreasing trend over time. The large-scale focus of this research demonstrates the long-term hydroclimatic sustainability of large-scale deployment of perennial bioenergy crops across the continental United States, revealing potential hot spots of suitable deployment and regions to avoid.


2012 ◽  
pp. 99-117 ◽  
Author(s):  
Christopher Webster ◽  
David Flaspohler ◽  
Steve Pawson ◽  
Eckehard Brockerhoff

Author(s):  
A. M. Rokochinskiy ◽  
P. P. Volk ◽  
R. M. Koptyuk ◽  
N. V. Prykhodko

Relevance of research. At both global and regional levels, climate change has become an indisputable fact, the presence of which has posed to humanity the challenge of solving a number of extremely important and complex tasks related to the development and implementation of a strategy for their practical continued existence. Data base on evaporation and water needs for agricultural crops in the different periods of their growing, depending on the climatic conditions, are the basis for the development of design and formation of operational regimes of water regulation carried out by justifying the necessary methods of water regulation, types, structures and modes of operation of hydro-reclamation systems and calculation of their parameters. Aim of the study is to estimate the changes in water needs during crop cultivation on the drained lands of the Western Polissya in Ukraine in the variable climatic, agricultural and ameliorative conditions for the substantiation of appropriate adaptive decisions to it. To achieve this goal, the authors evaluated the weather and climate conditions in the Western Polissya in Ukraine and calculated the evaporation in the studied conditions, planned and carried out a large-scale computer experiment, based on a complex of predictive-simulation models concerning the basic regimes and technological variables of the hydro-reclamation system parameters, climate conditions, water regime, water regulation technologies and the productivity of drained lands for the schematized natural, agricultural and ameliorative conditions. Research methods. The research methods were based on the application of system theory along with the systematic approach, system analysis and modeling oriented on widespread use of computers and related software in developing modern approaches to the substantiation of technical and technological solutions for water regulation on the drained lands in the conditions of climate change. The object of the study is the drainage system “Birky” in Rivne region, typical for the region in relation to the natural land reclamation conditions.   Results of the study and the main conclusions. It was established the needs for additional irrigation of cultivated crops on the drained lands of the Western Polissya in Ukraine in the current weather and climatic conditions. Based on the long-term forecast the vegetative values of the total evaporation and the formation of water needs for the drained lands in the variable climatic, agricultural land reclamation conditions were determined. The technological efficiency of different technologies of the irrigation on the drained lands was evaluated.  This approach to the estimation of changes in water needs during crop cultivation in the variable climatic, agricultural and ameliorative conditions allows determining the best technology of water regulation for growing a particular crop under the studied conditions in terms of the most rational use of water resources and the efficiency of system functioning. Prospects. The obtained results can be effectively used for justification of regime and technological decisions in the projects of construction and reconstruction of hydro-reclamation systems of the Western Polissya in Ukraine in the variable climate conditions and developing hydro-technical adaptive measures to the predicted climate change in the region. 


2016 ◽  
Vol 39 ◽  
pp. 89-92 ◽  
Author(s):  
Luca Alberti ◽  
Martino Cantone ◽  
Loris Colombo ◽  
Gabriele Oberto ◽  
Ivana La Licata

2013 ◽  
pp. 79-94
Author(s):  
Ngoc Luu Bich

Climate change (CC) and its impacts on the socio-economy and the development of communities has become an issue causing very special concern. The rise in global temperatures, in sea levels, extreme weather phenomena, and salinization have occurred more and more and have directly influenced the livelihoods of rural households in the Red River Delta – one of the two regions projected to suffer strongly from climate change in Vietnam. For farming households in this region, the major and traditional livelihoods are based on main production materials as agricultural land, or aquacultural water surface Changes in the land use of rural households in the Red River Delta during recent times was influenced strongly by the Renovation policy in agriculture as well as the process of industrialization and modernization in the country. Climate change over the past 5 years (2005-2011) has started influencing household land use with the concrete manifestations being the reduction of the area cultivated and the changing of the purpose of land use.


Sign in / Sign up

Export Citation Format

Share Document