scholarly journals Endometritis Changes the Neurochemical Characteristics of the Caudal Mesenteric Ganglion Neurons Supplying the Gilt Uterus

Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 891
Author(s):  
Barbara Jana ◽  
Jarosław Całka

This study analyzed the influence of uterine inflammation on the neurochemical characteristics of the gilt caudal mesenteric ganglion (CaMG) uterus-supplying neurons. The horns of uteri were injected with retrograde tracer Fast Blue on day 17 of the first studied estrous cycle. Twenty-eight days later (the expected day 3 of the third studied estrous cycle), either saline or Escherichia coli suspension were administered into each uterine horn. Only the laparotomy was done in the control gilts. After 8 days, the CaMGs and uteri were harvested. The infected gilts presented a severe acute endometritis. In the CaMGs, the populations of uterine perikarya possessing dopamine-β-hydroxylase (DβH) and/or neuropeptide Y (NPY), somatostatin (SOM), galanin (GAL) and vasoactive intestinal polypeptide (VIP) were analyzed using the double immunofluorescence method. In the CaMG, bacterial injection decreased the total number of the perikarya (Fast Blue-positive), the small and large perikarya populations in the dorsal and central regions, and the small and large perikarya populations coded DβH+/GAL- and DβH-/NPY+. After bacterial treatment, there was an increase in the numbers of small and large perikarya coded DβH+/NPY+, small perikarya coded DβH+/GAL+ and DβH+/SOM- and large perikarya coded DβH+/VIP+. To summarize, uterine inflammation influences the neurochemical characteristics of the CaMG uterus-supplying neurons, which may be important for pathologically changed organ functions.

2018 ◽  
Vol 63 (No. 6) ◽  
pp. 261-270
Author(s):  
W. Sienkiewicz ◽  
A. Dudek ◽  
A. Chroszcz ◽  
M. Janeczek ◽  
J. Kaleczyc

Combined retrograde tracing and double labelling immunohistochemistry were applied to study the distribution and chemical coding of autonomic neurons projecting to the ovine hip joint capsule. As revealed by retrograde tracing, fast blue-positive autonomic neurons supplying the lateral side of the hip joint capsule and the medial side of the hip joint capsule were located within the lumbar and sacral of the ipsilateral sympathetic chain ganglia and within the caudal mesenteric ganglion. Immunohistochemistry revealed that nearly all (sympathetic chain ganglia: 96% and caudal mesenteric ganglion: 98.8%) the neurons were adrenergic in nature (positive for dopamine β-hydroxylase). Many retrogradely labelled neurons also displayed immunoreactivity to neuropeptide Y (approximately 34% of fast blue-positive neurons within caudal mesenteric ganglion and sympathetic chain ganglia). Populations of Met-Enk<sup>+</sup> (20%) and Leu-Enk<sup>+</sup> (6%) neurons were present only in the sympathetic chain ganglia while within caudal mesenteric ganglion no enkephalinergic-labelled neurons were noted. Only a small population (2.2%) of hip joint capsule-projecting neurons were Gal-IR and they were observed only within the caudal mesenteric ganglion. No cholinergic neurons involved in the innervation of the hip joint capsule were found. However, fast blue-positive nerve cell bodies were surrounded by numerous cholinergic nerve fibres often forming basket-like formations. Single Gal<sup>+</sup> nerve fibres were found in the intraganglionic connective tissue. Substance P-positive or calcitonin gene-related peptide-positive intraganglionic nerve terminals were very numerous and formed “baskets” surrounding fast blue-positive perikarya within sympathetic chain ganglias and caudal mesenteric ganglion.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Bartosz Miciński ◽  
Barbara Jana ◽  
Jarosław Całka

Abstract Background The focus of the study was to examine the impact of the inflamed uterus on the population of the paracervical ganglion (PCG) uterus-innervating perikarya and their chemical coding. Fast Blue retrograde tracer was injected into the wall of uterine horns on the 17th day of the first studied estrous cycle. After 28 days, either Escherichia coli suspension or saline was applied to the horns of the uterus, whereas the control group received laparotomy only. Eight days after the above-mentioned procedures, uterine cervices with PCG were collected. Both macroscopic and histopathologic examinations confirmed severe acute endometritis in the Escherichia coli-injected uteri. The double immunofluorescence method was used to analyze changes in the PCG populations coded with dopamine-β‐hydroxylase (DβH) and/or neuropeptide Y (NPY), somatostatin (SOM), vasoactive intestinal polypeptide (VIP) and neuronal isoform of nitric oxide synthase (nNOS). Results The use of Escherichia coli lowered the total number of Fast Blue-positive neurons. Moreover, an increase in DβH+/VIP+, DβH+/NPY+, DβH+/SOM + and DβH+/nNOS + expressing perikarya was noted. A rise in non-noradrenergic VIP-, SOM- and nNOS-immunopositive populations was also recorded, as well as a drop in DβH-positive neurotransmitter-negative neurons. Conclusions To sum up, inflammation of the uterus has an impact on the neurochemical properties of the uterine perikarya in PCG, possibly affecting the functions of the organ.


2003 ◽  
Vol 285 (6) ◽  
pp. G1129-G1138 ◽  
Author(s):  
Steven M. Miller ◽  
J. H. Szurszewski

The relationship between longitudinal and circular muscle tension in the mouse colon and mechanosensory excitatory synaptic input to neurons in the superior mesenteric ganglion (SMG) was investigated in vitro. Electrical activity was recorded intracellularly from SMG neurons, and muscle tension was simultaneously monitored in the longitudinal, circumferential, or both axes. Colonic intraluminal pressure and volume changes were also monitored simultaneously with muscle tension changes. The results showed that the frequency of fast excitatory postsynaptic potentials (fEPSPs) in SMG neurons increased when colonic muscle tension decreased, when the colon relaxed and refilled with fluid after contraction, and during receptive relaxation preceding spontaneous colonic contractions. In contrast, fEPSP frequency decreased when colonic muscle tension increased during spontaneous colonic contraction and emptying. Manual stretch of the colon wall to 10-15% beyond resting length in the circumferential axis of flat sheet preparations increased fEPSP frequency in SMG neurons, but stretch in the longitudinal axis to 15% beyond resting length in the same preparations did not. There was no increase in synaptic input when tubular colon segments were stretched in their long axes up to 20% beyond their resting length. The circumferential stretch-sensitive increase in the frequency of synaptic input to SMG neurons persisted when the colonic muscles were relaxed pharmacologically by nifedipine (2 μM) or nicardipine (3 μM). These results suggest that colonic mechanosensory afferent nerves projecting to the SMG function as length or stretch detectors in parallel to the circular muscle layer.


Sign in / Sign up

Export Citation Format

Share Document