scholarly journals Identification of Yak’s TLR4 Alternative Spliceosomes and Bioinformatic Analysis of TLR4 Protein Structure and Function

Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Xingdong Wang ◽  
Jie Pei ◽  
Pengjia Bao ◽  
Chunnian Liang ◽  
Min Chu ◽  
...  

In this study, the yak’s TLR4 gene alternative spliceosomes were investigated using PCR amplification and cloning to improve disease-resistance in yak and promote efficient utilization of yak’s resources. qRT-PCR was used to determine the expression levels of two alternatively spliced transcripts of the TLR4 gene in seven distinct tissues. To predict the function of proteins expressed by each TLR4 spliceosome, bioinformatic analysis of yak’s TLR4 protein structure and function was performed, which led to the identification of two alternative spliceosomes of yak’s TLR4 gene. The TLR4-X1 sequence length was 2526 bp, and it encoded full-length TLR4 protein (841 amino acids). The sequence length of the exon-2 deleted TLR4-X2 sequence was 1926 bp, and it encoded truncated TLR4 protein (641 amino acids). TLR4-X2 sequence was consistent with the predicted sequence of the TLR4 gene in GenBank. Each tissue showed significantly different expression levels of these two alternative spliceosomes. As per the bioinformatic analysis of the structure and function of TLR4 protein, deletion of exon-2 in the TLR4 gene resulted in frameshift mutations of the reading frame in the corresponding protein, which altered its ligand-binding and active sites. Besides, biological property such as substrate specificity of truncated TLR4 protein was also altered, leading to altered protein function. This study has laid a theoretical foundation for exploring the role of two variants of the TLR4 gene in yak’s disease resistance. Besides, this study’s data could be analyzed further to explore the molecular mechanism associated with disease-resistance in the yak.

Author(s):  
Mark Lorch

This chapter examines proteins, the dominant proportion of cellular machinery, and the relationship between protein structure and function. The multitude of biological processes needed to keep cells functioning are managed in the organism or cell by a massive cohort of proteins, together known as the proteome. The twenty amino acids that make up the bulk of proteins produce the vast array of protein structures. However, amino acids alone do not provide quite enough chemical variety to complete all of the biochemical activity of a cell, so the chapter also explores post-translation modifications. It finishes by looking as some dynamic aspects of proteins, including enzyme kinetics and the protein folding problem.


General principles Overview 2 Biomolecules 3 Proteins Overview 4 Amino acids and the peptide bond 6 Principles of protein structure 8 Structural proteins 12 Concepts of biochemical reactions and enzymes 16 Structure and function of enzymes 18 Enzyme co-factors 20 Enzyme kinetics 22 Membrane transporter proteins ...


Author(s):  
Shen Jean Lim ◽  
Brenton Davis ◽  
Danielle Gill ◽  
John Swetenburg ◽  
Laurie C Anderson ◽  
...  

Abstract Lucinid bivalves harbor environmentally acquired, chemosynthetic, gammaproteobacterial gill endosymbionts. Lucinid gill microbiomes, which may contain other gammaproteobacterial and/or spirochete taxa, remain under-sampled. To understand inter-host variability of the lucinid gill microbiome, specifically in the bacterial communities, we analyzed the microbiome content of Stewartia floridana collected from Florida. Sampled gills contained a monospecific gammaproteobacterial endosymbiont expressing lithoautotrophic, mixotrophic, diazotrophic, and C1 compound oxidation-related functions previously characterized in similar lucinid species. Another low-abundance Spirochaeta-like species in ∼72% of the sampled gills was most closely related to Spirochaeta-like species in another lucinid Phacoides pectinatus and formed a clade with known marine Spirochaeta symbionts. The spirochete expressed genes were involved in heterotrophy and the transport of sugars, amino acids, peptides, and other substrates. Few muscular and neurofilament genes from the host and none from the gammaproteobacterial and spirochete symbionts were differentially expressed among quadrats predominantly covered with seagrass species or 80% bare sand. Our results suggest that spirochetes are facultatively associated with S. floridana, with potential scavenging and nutrient cycling roles. Expressed stress- and defense-related functions in the host and symbionts also suggest species-species communications, which highlight the need for further study of the interactions among lucinid hosts, their microbiomes, and their environment.


2020 ◽  
Author(s):  
Khondker Rufaka Hossain ◽  
Daniel Clayton ◽  
Sophia C Goodchild ◽  
Alison Rodger ◽  
Richard James Payne ◽  
...  

Membrane protein structure and function are modulated via interactions with their lipid environment. This is particularly true for the integral membrane pumps, the P-type ATPases. These ATPases play vital roles...


Sign in / Sign up

Export Citation Format

Share Document