scholarly journals Genetic Effects of Single Nucleotide Polymorphisms in the Goat GDF9 Gene on Prolificacy: True or False Positive?

Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 886 ◽  
Author(s):  
Xinyu Wang ◽  
Qing Yang ◽  
Sihuan Zhang ◽  
Xiaoyu Zhang ◽  
Chuanying Pan ◽  
...  

Goat reproductive traits are complex quantitative traits controlled by polygenes and multipoint. To date, some high-fertility candidate genes in livestock have been unearthed and the growth differentiation factor 9 (GDF9) gene is one of them, which plays a crucial role in early folliculogenesis. According to the relevant previous studies and the National Center for Biotechnology Information Search database (NCBI), a total of 45 single nucleotide polymorphisms (SNPs) have been detected in the goat GDF9 gene, but which one or which ones have important effects on goat fecundity is still uncertain. Hence, in order to find effective molecular markers for goat genetic breeding and accelerate the goat improvement, this study summarized and classified the above 45 SNPs into four kinds, as well as compared and analyzed the same SNP effects and the different SNPs linkage effects on the reproductive traits in different goat breeds. Since there were many SNPs in the goat GDF9 gene, only 15 SNPs have been identified in more than 30 goat breeds worldwide and they showed different effects on the litter size. Therefore, this study mainly chose these 15 SNPs and discussed their relationship with goat productivity. Results showed that three non-synonymous SNPs A240V, Q320P, and V397I and three synonymous ones L61L, N121N, and L141L played a “true” role in the litter size trait in many goat breeds around the world. However, the regulatory mechanisms still need further research. These results provide an effective tool for follow-up research developing the goat molecular breeding strategies and improving the goat reproductive traits.

2019 ◽  
Vol 24 (1) ◽  
pp. 51 ◽  
Author(s):  
Resti Yuliana Rahmawati ◽  
Sumadi Sumadi ◽  
Tety Hartatik

The growth differentiation factor 9 (GDF9) gene has been regarded as having major impacts on ovulation rate and litter size in sheep. The aim of this study was to identify the single nucleotide polymorphisms (SNPs) of the GDF9 gene and their association with litter size in Garut sheep. For this purpose, a total of 60 ewes of Garut sheep were included in this study. Based on the sheep GDF9 reference sequences (Genbank Acc. No. AF078545.2), one pair of primers (5’-CTGCTGTTTAACCTGGATCGTG-3 5’-GGAGAGCCATACCGATGTCC-3 as forward and reverse, respectively) was used for PCR amplification. The results revealed that four SNPs (g.54C>T, g.60G>A, g.304G>A, and g.333G>A) were found in Garut sheep by direct sequencing. For SNP g.54C>T, the sheep exhibited the highest frequency of allele C and genotype CC. On the other hand, SNPs g.60G>A, g.304G>A, and g.333G>A showed a higher frequency of allele G than allele A, and the GG genotype was predominant in the population. SNP g.333G>A had a significant effect on litter size (p < 0.05), and ewes with the GG genotype had a higher litter size than those with the GA genotype. Genotype distributions for all identified SNPs were in agreement with Hardy-Weinberg equilibrium. We highlight that SNP g.333G>A may be useful as a genetic marker for litter size in Garut sheep.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lingbin Liu ◽  
Zhifu Cui ◽  
Qihai Xiao ◽  
Haihan Zhang ◽  
Xiaoling Zhao ◽  
...  

The aim of the study was to investigateGDF9gene polymorphisms and their association with reproductive traits in chicken using DNA sequencing. A total of 279 Dongxiang blue-shelled (DX) chickens and 232 Luhua (LH) chickens were used for validation. We detected 15 single nucleotide polymorphisms (SNPs): nine SNPs were previously unreported in chicken, two were missense mutations, and only three exhibited significant associations with reproductive traits. G.17156387C>T was significantly associated with age at first egg (AFE) and weight of first egg (WFE) in both breeds. Birds carrying the CC genotype exhibited higher AFE and WFE values than those with the TT genotype. The SNP g.17156427A>G exhibited an association with egg weight at 300 days of age (EWTA) in DX but not in LH chickens. The SNP g.17156703A>C affected the AFE and EN (total number of eggs at 300 days of age) in DX chickens. In addition, certain diplotypes significantly affected AFE, BWTA (body weight at 300 days of age), and EN in both breeds. RT-PCR results showed that theGDF9gene was highly expressed in stroma with cortical follicles (STR) and prehierarchal follicles. These results provided further evidence that theGDF9gene is involved in determining reproductive traits in chicken.


2018 ◽  
Vol 18 (3) ◽  
pp. 685-698 ◽  
Author(s):  
Reza Talebi ◽  
Ahmad Ahmadi ◽  
Fazlollah Afraz ◽  
Julien Sarry ◽  
Florent Woloszyn ◽  
...  

Abstract The present study aimed to investigate the presence of polymorphisms at four known genes controlling ovine prolificacy i.e. BMP15, GDF9, BMPR1B and B4GALNT2 in a sample of 115 Iranian Mehraban ewes and their association with litter size (LS) and lambs’ birth weight (BW) traits. Using Sanger sequencing of exons and polymorphism specific genotyping, ten SNPs (Single Nucleotide Polymorphisms) were observed in only two genes, GDF9 and BMPR1B. Seven SNPs were found in the GDF9 gene on the chromosome 5. Among them, six were already described in the coding sequence, and a new one (g.41840985C>T) was found in the 3’UTR. In the BMPR1B gene on the chromosome 6, three novel SNPs were detected in the exon 7 (g.29382184G>A; g.29382337G>A and g.29382340G>A). Allelic frequencies were established for six SNPs among the ten identified and they were in Hardy-Weinberg equilibrium. A significant association was found between the novel SNPs found in the exon 7 of BMPR1B and LS. Present results indicate the potential role of the BMPR1B locus in controlling prolificacy of Mehraban sheep and provide genetic markers for further exploitation in selection to improve reproductive efficiency.


2018 ◽  
Vol 61 (4) ◽  
pp. 379-386
Author(s):  
Jung Hye Hwang ◽  
Sang Mi An ◽  
Go Eun Yu ◽  
Da Hye Park ◽  
Deok Gyeong Kang ◽  
...  

Abstract. Litter size is an economically important trait in the pig industry. We aimed to identify genetic markers associated with litter size, which can be used in breeding programs for improving reproductive traits. Single-nucleotide polymorphisms (SNPs) of Berkshire pigs in the N-acetyltransferase 9 (NAT9) and Mitogen-activated protein kinase kinase kinase 3 (MAP3K3) genes were from RNA sequencing results, and already exist in the databank (NCBI), and were confirmed by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). A total of 272 Berkshire sows were used to examine the genotype, and their association with litter size traits was analyzed. The NAT9 SNP was located in chromosome 12 exon 640 mRNA (A > G) and the MAP3K3 SNP was located in chromosome 12 intron 11 (80, C > T). Association analysis indicated that the GG genotype of NAT9 and the CT genotype of MAP3K3 had the highest values for litter size traits. The GG genotype expressed higher levels of NAT9 mRNA in the endometrium than the other genotypes did, and a positive correlation was found between litter size traits and NAT9, but not MAP3K3 expression level. These results indicate that the NAT9 and MAP3K3 can be used as candidate genes applicable in breeding program for the improvement of litter size traits in Berkshire pigs.


Animals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 432 ◽  
Author(s):  
Yongfu La ◽  
Qiuyue Liu ◽  
Liping Zhang ◽  
Mingxing Chu

SLC5A1, CCNA1, and ABCC1 have been extensively studied as candidate genes because of their great influence on the reproductive traits of animals. However, little is known about the association between polymorphisms of the SLC5A1, CCNA1, and ABCC1 genes and litter size in Small-Tail Han sheep. In this study, the expression levels of SLC5A1, CCNA1, and ABCC1 in HPG (hypothalamic–pituitary–gonadal) axis tissues of polytocous and monotocous Small-Tail Han sheep were analyzed by qPCR. To better understand the effects of four single nucleotide polymorphisms (SNPs) comprising of g.70067210 T > C in SLC5A1, g.25350431 C > T and g.25360220 T > C in CCNA1, and g.14413132 C > T in ABCC1, a population genetic analysis was conducted using data obtained from genotyping in 728 sheep from seven breeds. The results indicated that all genes included in this study were differentially expressed in the pituitary and uterus of polytocous and monotocous Small-Tail Han sheep (p < 0.05). The associations of these four SNPs and the FecB mutation with litter size in 384 Small-Tail Han sheep were analyzed, therefore, and it was found that both g.70067210T > C and the FecB mutation were significantly associated with litter size (p < 0.05). The linear regression analysis of the association of multiple markers (FecB and g.70067210 T > C in SCL5A1) with litter size indicated that homozygous ewes carrying the BB/TT genotype had larger litter size than any ewes with any other genotype. In conclusion, the SLC5A1 SNPs significantly affect litter size in sheep and are useful as genetic marker for litter size.


Animals ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 71 ◽  
Author(s):  
Mei Zhou ◽  
Zhangyuan Pan ◽  
Xiaohan Cao ◽  
Xiaofei Guo ◽  
Xiaoyun He ◽  
...  

2015 ◽  
Vol 58 (2) ◽  
pp. 317-323 ◽  
Author(s):  
T. Kumchoo ◽  
S. Mekchay

Abstract. Osteopontin (OPN) gene is a secreted phosphoprotein which appears to play a key function in the conceptus implantation, placentation and maintenance of pregnancy in pigs. The objectives of this study were to verify the non-synonymous single nucleotide polymorphisms (SNPs) and their association with litter size traits in commercial Thai Large White pigs. A total of 320 Thai Large White sows were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Three SNPs at c.425G> A, c.573T> C and c.881C> T revealed amino acid exchange rates of p.110Ala> Thr, p.159Val> Ala and p.262Pro> Ser, respectively, and were then segregated. These three SNPs were significantly associated with total number born (TNB) and number born alive (NBA) traits. No polymorphisms of the two SNP markers (c.278A> G and c.452T> G) were observed in this study. Moreover, the SNPs at c.425G> A and c.573T> C were found to be in strong linkage disequilibrium. The association of OPN with litter size emphasizes the importance of porcine OPN as a candidate gene for reproductive traits in pig breeding.


2016 ◽  
Vol 24 (3) ◽  
pp. 213 ◽  
Author(s):  
E.M. Abdel-Kafy ◽  
S.F. Darwish ◽  
D. ElKhishin

The Myostatin (MSTN), or Growth and Differentiation Factor 8 (GDF8), gene has been implicated in the double muscling phenomenon, in which a series of mutations render the gene inactive and unable to properly regulate muscle fibre deposition. Single nucleotide polymorphisms (SNPs) in the MSTN gene have been correlated to production traits, making it a candidate target gene to enhance livestock and fowl productivity. This study aimed to assess any association of three SNPs in the rabbit MSTN gene (c.713T&gt;A in exon 2, c.747+34C&gt;T in intron 2, and c.*194A&gt;G in 3’-untranslated region) and their combinations, with carcass, production and reproductive traits. The investigated traits included individual body weight, daily body weight gain, carcass traits and reproductive traits. The 3 SNPs were screened using PCR-restriction fragment length polymorphism (RFLP)-based analysis and the effects of the different SNP genotypes and their combinations were estimated in a rabbit population. Additionally, additive and dominance effects were estimated for significant traits. The results found no significant association between the c.713 T&gt;A SNP and all the examined traits. Allele T at the c.747+34C&gt;T SNP was only significantly associated (P&lt;0.05) with increased body weight at 12 wk of age. However, for the SNP residing in the 3’ untranslated region (c.*194A&gt;G), allele G was significantly associated (P&lt;0.05) with increased body weight and high growth rate. Genotype GG at the c.*194A&gt;G SNP also had positive effects on most carcass traits. The estimated additive genetic effect for the c.*194A&gt;G SNP was significant (P&lt;0.05) with most body weight, daily gain and carcass traits. No significant association was obtained between any MSTN SNPs and reproductive traits. In the combinations analysis, regardless of the genotypes of SNPs at c.713T&gt;A and c.747+34C&gt;T, GG at the c.*194A&gt;G SNP correlated with highest values in body weight and daily weight gain. In conclusion, the ‘G’ allele at the c.*194A&gt;G SNP had positive effects on growth and carcass traits and so could be used as a favourable allele in planning rabbit selection. Further population-wide studies are necessary to test the association of the c.*194A&gt;G SNP with carcass traits. We also recommend evaluation of the potential effects of the c.*194A&gt;G SNP on MSTN gene expression.


Sign in / Sign up

Export Citation Format

Share Document