scholarly journals A Novel Intelligent Method for Bearing Fault Diagnosis Based on EEMD Permutation Entropy and GG Clustering

2020 ◽  
Vol 10 (1) ◽  
pp. 386 ◽  
Author(s):  
Jingbao Hou ◽  
Yunxin Wu ◽  
Hai Gong ◽  
A. S. Ahmad ◽  
Lei Liu

For a rolling bearing fault that has nonlinearity and nonstationary characteristics, it is difficult to identify the fault category. A rolling bearing clustering fault diagnosis method based on ensemble empirical mode decomposition (EEMD), permutation entropy (PE), linear discriminant analysis (LDA), and the Gath–Geva (GG) clustering algorithm is proposed. Firstly, we decompose the vibration signal using EEMD, and several inherent modal components are obtained. Then, the permutation entropy values of each modal component are calculated to get the entropy feature vector, and the entropy feature vector is reduced by the LDA method to be used as the input of the clustering algorithm. The data experiments show that the proposed fault diagnosis method can obtain satisfactory clustering indicators. It implies that compared with other mode combination methods, the fault identification method proposed in this study has the advantage of better intra-class compactness of clustering results.

2020 ◽  
Vol 44 (3) ◽  
pp. 405-418
Author(s):  
Shuzhi Gao ◽  
Tianchi Li ◽  
Yimin Zhang

Taking aim at the nonstationary nonlinearity of the rolling bearing vibration signal, a rolling bearing fault diagnosis method based on the entropy fusion feature of complementary ensemble empirical mode decomposition (CEEMD) is proposed in combination with information fusion theory. First, CEEMD of the vibration signal of the rolling bearing is performed. Then the signal is decomposed into the sum of several intrinsic mode functions (IMFs), and the singular entropy, energy entropy, and permutation entropy are obtained for the IMFs with fault features. Second, the feature extraction method of entropy fusion is proposed, and the three entropy data obtained are input into kernel principal component analysis (KPCA) for feature fusion and dimensionality reduction to obtain complementary features. Finally, the extracted features are imported into the particle swarm optimization (PSO) algorithm to optimize the least-squares support vector machine (LSSVM) for fault classification. Through experimental verification, the proposed method can be used for roller bearing fault diagnosis.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jinde Zheng ◽  
Junsheng Cheng ◽  
Yu Yang

A new rolling bearing fault diagnosis approach based on multiscale permutation entropy (MPE), Laplacian score (LS), and support vector machines (SVMs) is proposed in this paper. Permutation entropy (PE) was recently proposed and defined to measure the randomicity and detect dynamical changes of time series. However, for the complexity of mechanical systems, the randomicity and dynamic changes of the vibration signal will exist in different scales. Thus, the definition of MPE is introduced and employed to extract the nonlinear fault characteristics from the bearing vibration signal in different scales. Besides, the SVM is utilized to accomplish the fault feature classification to fulfill diagnostic procedure automatically. Meanwhile, in order to avoid a high dimension of features, the Laplacian score (LS) is used to refine the feature vector by ranking the features according to their importance and correlations with the main fault information. Finally, the rolling bearing fault diagnosis method based on MPE, LS, and SVM is proposed and applied to the experimental data. The experimental data analysis results indicate that the proposed method could identify the fault categories effectively.


Author(s):  
Ping Zou ◽  
Baocun Hou ◽  
Jiang Lei ◽  
Zhenji Zhang

The condition monitoring and fault detection of rolling bearing are of great significance to ensure the safe and reliable operation of rotating machinery system.In the past few years, deep neural network (DNN) has been recognized as an effective tool to detect rolling bearing faults. However, It is too complex to directly feed the original vibration signal to the DNN neural network, and the accuracy of fault identification is not high. By using the signal preprocessing technology, the original signal can be effectively removed and preprocessed without losing the key diagnosis information. In this paper, a new EEMD-LSTM bearing fault diagnosis method is proposed, which combines the signal preprocessing technology with the EEMD method that can get clear fault feature signals, and LSTM technology to extract fault features automatically that improves the efficiency of fault feature extraction. In the case of small sample size, this method can significantly improve the accuracy of fault diagnosis.


2021 ◽  
Vol 1792 (1) ◽  
pp. 012035
Author(s):  
Xingtong Zhu ◽  
Zhiling Huang ◽  
Jinfeng Chen ◽  
Junhao Lu

Sign in / Sign up

Export Citation Format

Share Document