scholarly journals Determining Whether Tennis Benefits the Updating Function in Young Children: A Functional Near-Infrared Spectroscopy Study

2020 ◽  
Vol 10 (1) ◽  
pp. 407 ◽  
Author(s):  
Yinghui Lai ◽  
Zhipeng Wang ◽  
Guang H. Yue ◽  
Changhao Jiang

This study aimed at investigating the behavioral and neuro-electrical impacts of a coordinative exercise intervention on the updating function of the working memory (WM) in young children. Children in the experimental group was tested on the 1-back working memory task before and after a coordinative exercise program that involved a 60 min session twice per week for eight weeks (totally 16 sessions), while the control group underwent routine classroom activities with the same WM tests. The results showed that the hit rates of performing the 1-back task increased significantly in the experimental group compared with that of the control group. The experimental group demonstrated a larger decrease in both reaction time and false alarm rates from pre-test to post-test than the control group. Physical fitness improved after exercise intervention in the experimental group. Neural adaptations due to the exercise training were evaluated using functional near-infrared spectroscopy (fNIRS) and the results indicated that the experimental group experienced a greater cortical oxygenated hemoglobin (Oxy-Hb) increase in the prefrontal area after the intervention than the control group. These results suggest that coordinative exercises are beneficial for improving WM as well as reaction time and physical fitness in young children.

2022 ◽  
Vol 3 ◽  
Author(s):  
Luciënne A. de With ◽  
Nattapong Thammasan ◽  
Mannes Poel

To enable virtual reality exposure therapy (VRET) that treats anxiety disorders by gradually exposing the patient to fear using virtual reality (VR), it is important to monitor the patient's fear levels during the exposure. Despite the evidence of a fear circuit in the brain as reflected by functional near-infrared spectroscopy (fNIRS), the measurement of fear response in highly immersive VR using fNIRS is limited, especially in combination with a head-mounted display (HMD). In particular, it is unclear to what extent fNIRS can differentiate users with and without anxiety disorders and detect fear response in a highly ecological setting using an HMD. In this study, we investigated fNIRS signals captured from participants with and without a fear of height response. To examine the extent to which fNIRS signals of both groups differ, we conducted an experiment during which participants with moderate fear of heights and participants without it were exposed to VR scenarios involving heights and no heights. The between-group statistical analysis shows that the fNIRS data of the control group and the experimental group are significantly different only in the channel located close to right frontotemporal lobe, where the grand average oxygenated hemoglobin Δ[HbO] contrast signal of the experimental group exceeds that of the control group. The within-group statistical analysis shows significant differences between the grand average Δ[HbO] contrast values during fear responses and those during no-fear responses, where the Δ[HbO] contrast values of the fear responses were significantly higher than those of the no-fear responses in the channels located towards the frontal part of the prefrontal cortex. Also, the channel located close to frontocentral lobe was found to show significant difference for the grand average deoxygenated hemoglobin contrast signals. Support vector machine-based classifier could detect fear responses at an accuracy up to 70% and 74% in subject-dependent and subject-independent classifications, respectively. The results demonstrate that cortical hemodynamic responses of a control group and an experimental group are different to a considerable extent, exhibiting the feasibility and ecological validity of the combination of VR-HMD and fNIRS to elicit and detect fear responses. This research thus paves a way toward the a brain-computer interface to effectively manipulate and control VRET.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Asato Morita ◽  
Yasunori Morishima ◽  
David W. Rackham

Accurate time estimation is crucial for many human activities and necessitates the use of working memory, in which the dorsolateral prefrontal cortex (DLPFC) plays a critical role. We tested the hypothesis that the DLPFC is activated in participants attempting time estimations that require working memory. Specifically, we used functional near-infrared spectroscopy (fNIRS) to investigate prefrontal cortical activity in the brains of individuals performing a prospective time production task. We measured cerebral hemodynamic responses in 26 healthy right-handed university students while they marked the passage of specified time intervals (3, 6, 9, 12, or 15 s) or performed a button-pressing (control) task. The behavioral results indicated that participants’ time estimations were accurate with minimal variability. The fNIRS data showed that activity was significantly higher in the right DLPFC during the time estimation task compared to the control task. Theoretical considerations and the results of this study suggest that DLPFC activation resulting from time estimation indicates that the working memory system is in use.


Sign in / Sign up

Export Citation Format

Share Document