scholarly journals Global Spatial-Temporal Graph Convolutional Network for Urban Traffic Speed Prediction

2020 ◽  
Vol 10 (4) ◽  
pp. 1509 ◽  
Author(s):  
Liang Ge ◽  
Siyu Li ◽  
Yaqian Wang ◽  
Feng Chang ◽  
Kunyan Wu

Traffic speed prediction plays a significant role in the intelligent traffic system (ITS). However, due to the complex spatial-temporal correlations of traffic data, it is very challenging to predict traffic speed timely and accurately. The traffic speed renders not only short-term neighboring and multiple long-term periodic dependencies in the temporal dimension but also local and global dependencies in the spatial dimension. To address this problem, we propose a novel deep-learning-based model, Global Spatial-Temporal Graph Convolutional Network (GSTGCN), for urban traffic speed prediction. The model consists of three spatial-temporal components with the same structure and an external component. The three spatial-temporal components are used to model the recent, daily-periodic, and weekly-periodic spatial-temporal correlations of the traffic data, respectively. More specifically, each spatial-temporal component consists of a dynamic temporal module and a global correlated spatial module. The former contains multiple residual blocks which are stacked by dilated casual convolutions, while the latter contains a localized graph convolution and a global correlated mechanism. The external component is used to extract the effect of external factors, such as holidays and weather conditions, on the traffic speed. Experimental results on two real-world traffic datasets have demonstrated that the proposed GSTGCN outperforms the state-of-the-art baselines.

2021 ◽  
Author(s):  
Anqin Zhang ◽  
Qizheng Liu ◽  
Ting Zhang

Abstract Accurate vehicle speed prediction is of great significance to the urban traffic intelligent control system. However, in terms of traffic speed prediction, the modules that integrate temporal and spatial features in the existing traffic speed prediction methods are effective in short-term prediction, but the medium-term or long-term prediction errors are relatively large. Aiming at this limitation, this paper proposes a traffic speed prediction method that combines attention and Spatial-temporal features, referred to as ASTCN. Specifically, unlike previous methods, ASTCN can use the temporal attention convolutional network (ATCN) to separately extract temporal features from the traffic speed features collected by each sensor, and use the spatial attention mechanism to extract spatial features and then perform spatial-temporal feature fusion. Experiments on three real-world datasets show that the proposed ASTCN model outperforms the state-of-the-art baselines.


Author(s):  
Shengnan Guo ◽  
Youfang Lin ◽  
Ning Feng ◽  
Chao Song ◽  
Huaiyu Wan

Forecasting the traffic flows is a critical issue for researchers and practitioners in the field of transportation. However, it is very challenging since the traffic flows usually show high nonlinearities and complex patterns. Most existing traffic flow prediction methods, lacking abilities of modeling the dynamic spatial-temporal correlations of traffic data, thus cannot yield satisfactory prediction results. In this paper, we propose a novel attention based spatial-temporal graph convolutional network (ASTGCN) model to solve traffic flow forecasting problem. ASTGCN mainly consists of three independent components to respectively model three temporal properties of traffic flows, i.e., recent, daily-periodic and weekly-periodic dependencies. More specifically, each component contains two major parts: 1) the spatial-temporal attention mechanism to effectively capture the dynamic spatialtemporal correlations in traffic data; 2) the spatial-temporal convolution which simultaneously employs graph convolutions to capture the spatial patterns and common standard convolutions to describe the temporal features. The output of the three components are weighted fused to generate the final prediction results. Experiments on two real-world datasets from the Caltrans Performance Measurement System (PeMS) demonstrate that the proposed ASTGCN model outperforms the state-of-the-art baselines.


2021 ◽  
Vol 10 (7) ◽  
pp. 485
Author(s):  
Jiandong Bai ◽  
Jiawei Zhu ◽  
Yujiao Song ◽  
Ling Zhao ◽  
Zhixiang Hou ◽  
...  

Accurate real-time traffic forecasting is a core technological problem against the implementation of the intelligent transportation system. However, it remains challenging considering the complex spatial and temporal dependencies among traffic flows. In the spatial dimension, due to the connectivity of the road network, the traffic flows between linked roads are closely related. In the temporal dimension, although there exists a tendency among adjacent time points, the importance of distant time points is not necessarily less than that of recent ones, since traffic flows are also affected by external factors. In this study, an attention temporal graph convolutional network (A3T-GCN) was proposed to simultaneously capture global temporal dynamics and spatial correlations in traffic flows. The A3T-GCN model learns the short-term trend by using the gated recurrent units and learns the spatial dependence based on the topology of the road network through the graph convolutional network. Moreover, the attention mechanism was introduced to adjust the importance of different time points and assemble global temporal information to improve prediction accuracy. Experimental results in real-world datasets demonstrate the effectiveness and robustness of the proposed A3T-GCN. We observe the improvements in RMSE of 2.51–46.15% and 2.45–49.32% over baselines for the SZ-taxi and Los-loop, respectively. Meanwhile, the Accuracies are 0.95–89.91% and 0.26–10.37% higher than the baselines for the SZ-taxi and Los-loop, respectively.


Author(s):  
Bing Yu ◽  
Haoteng Yin ◽  
Zhanxing Zhu

Timely accurate traffic forecast is crucial for urban traffic control and guidance. Due to the high nonlinearity and complexity of traffic flow, traditional methods cannot satisfy the requirements of mid-and-long term prediction tasks and often neglect spatial and temporal dependencies. In this paper, we propose a novel deep learning framework, Spatio-Temporal Graph Convolutional Networks (STGCN), to tackle the time series prediction problem in traffic domain. Instead of applying regular convolutional and recurrent units, we formulate the problem on graphs and build the model with complete convolutional structures, which enable much faster training speed with fewer parameters. Experiments show that our model STGCN effectively captures comprehensive spatio-temporal correlations through modeling multi-scale traffic networks and consistently outperforms state-of-the-art baselines on various real-world traffic datasets.


2021 ◽  
Vol 1972 (1) ◽  
pp. 012095
Author(s):  
Wentian Chen ◽  
Jie Fang ◽  
Zhijia Liu ◽  
Mengyun Xu

Author(s):  
Ming-Chang Lee ◽  
Jia-Chun Lin ◽  
Ernst Gunnar Gran

Over the past decade, many approaches have been introduced for traffic speed prediction. However, providing fine-grained, accurate, time-efficient, and adaptive traffic speed prediction for a growing transportation network where the size of the network keeps increasing and new traffic detectors are constantly deployed has not been well studied. To address this issue, this paper presents DistTune based on long short-term memory (LSTM) and the Nelder-Mead method. When encountering an unprocessed detector, DistTune decides if it should customize an LSTM model for this detector by comparing the detector with other processed detectors in the normalized traffic speed patterns they have observed. If a similarity is found, DistTune directly shares an existing LSTM model with this detector to achieve time-efficient processing. Otherwise, DistTune customizes an LSTM model for the detector to achieve fine-grained prediction. To make DistTune even more time-efficient, DisTune performs on a cluster of computing nodes in parallel. To achieve adaptive traffic speed prediction, DistTune also provides LSTM re-customization for detectors that suffer from unsatisfactory prediction accuracy due to, for instance, changes in traffic speed patterns. Extensive experiments based on traffic data collected from freeway I5-N in California are conducted to evaluate the performance of DistTune. The results demonstrate that DistTune provides fine-grained, accurate, time-efficient, and adaptive traffic speed prediction for a growing transportation network.


Sign in / Sign up

Export Citation Format

Share Document