scholarly journals Analysis of Effects of Rock Physical Properties Changes from Freeze-Thaw Weathering in Ny-Ålesund Region: Part 1—Experimental Study

2020 ◽  
Vol 10 (5) ◽  
pp. 1707 ◽  
Author(s):  
Keunbo Park ◽  
Kiju Kim ◽  
Kichoel Lee ◽  
Dongwook Kim

In order to investigate the weathering characteristics of rocks in response to freeze-thaw conditions in northern latitudes, we analysed meteorological data from the Ny-Ålesund region in Norway, and observed changes in the physical and mechanical properties of rocks of dolomite and quartzite. To assess the effects of freeze-thaw weathering on these rock properties, 900 cycles of long-term freeze-thaw tests were conducted for the sampled rocks in two locations. P-wave velocity, absorption, shore hardness, and the uniaxial compressive strength of the sampled rocks were measured at every 150 cycles in order to analyse physical and mechanical mediator variables of freeze-thaw weathering. It was found that an increasing number of freeze-thaw cycle on the sampled rocks decreases uniaxial compressive strength, shore hardness, and P-wave velocity and increases absorption.

2020 ◽  
Vol 10 (10) ◽  
pp. 3392 ◽  
Author(s):  
Keunbo Park ◽  
Bang Yong Lee ◽  
Kichoel Lee ◽  
Dongwook Kim

From the examination of rock physical parameters’ changes of compressive strength, shore hardness, water absorption, P-wave velocity with increasing freeze–thaw cycles, correlations of these parameters were investigated. Rock samples were collected from Ny-Ålesund region in Norway. As compressive strength and shore hardness inherently have high uncertainties due to inhomogeneous rock composition and internal fissures and cracks, only the relationship between water absorption and P-wave velocity revealed high correlations, providing meaningful linear fitting equations. From the correlation analysis results and clear trends of increasing water absorption and decreasing P-wave velocity with increasing freeze–thaw cycle found in part one of the companion study, prediction equations of future changes of rock physical parameters are proposed using P-wave velocity or water absorption. In addition, future rock weathering grade changes with time can be predicted from estimation of water absorption or P-wave velocity change due to freeze–thaw cycles.


2021 ◽  
Vol 11 (22) ◽  
pp. 10653
Author(s):  
Jingwei Gao ◽  
Chao Xu ◽  
Yan Xi ◽  
Lifeng Fan

This study investigated the effects of freezing temperature under freeze-thaw cycling conditions on the mechanical behavior of sandstone. First, the sandstone specimens were subjected to 10-time freeze-thaw cycling treatments at different freezing temperatures (−20, −40, −50, and −60 °C). Subsequently, a series of density, ultrasonic wave, and static and dynamic mechanical behavior tests were carried out. Finally, the effects of freezing temperature on the density, P-wave velocity, stress–strain curves, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption of sandstone were discussed. The results show that the density slightly decreases as temperature decreases, approximately by 1.0% at −60 °C compared with that at 20 °C. The P-wave velocity, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption obviously decrease. As freezing temperature decreases from 20 to −60 °C, the static uniaxial compressive strength, static elastic modulus, dynamic strength, and dynamic energy absorption of sandstone decrease by 16.8%, 21.2%, 30.8%, and 30.7%, respectively. The dynamic mechanical behavior is more sensitive to the freezing temperature during freeze-thawing cycling compared with the static mechanical behavior. In addition, a higher strain rate can induce a higher dynamic strength and energy absorption.


2021 ◽  
Vol 74 (4) ◽  
pp. 521-528
Author(s):  
André Cezar Zingano ◽  
Paulo Salvadoretti ◽  
Rafael Ubirajara Rocha ◽  
João Felipe Coimbra Leite Costa

2020 ◽  
Vol 10 (13) ◽  
pp. 4565
Author(s):  
Manuel Saldaña ◽  
Javier González ◽  
Ignacio Pérez-Rey ◽  
Matías Jeldres ◽  
Norman Toro

In the rock mechanics and rock engineering field, the strength parameter considered to characterize the rock is the uniaxial compressive strength (UCS). It is usually determined in the laboratory through a few statistically representative numbers of specimens, with a recommended minimum of five. The UCS can also be estimated from rock index properties, such as the effective porosity, density, and P-wave velocity. In the case of a porous rock such as travertine, the random distribution of voids inside the test specimen (not detectable in the density-porosity test, but in the compressive strength test) causes large variations on the UCS value, which were found in the range of 62 MPa for this rock. This fact complicates a sufficiently accurate determination of experimental results, also affecting the estimations based on regression analyses. Aiming to solve this problem, statistical analysis, and machine learning models (artificial neural network) was developed to generate a reliable predictive model, through which the best results for a multiple regression model between uniaxial compressive strength (UCS), P-wave velocity and porosity were obtained.


Sign in / Sign up

Export Citation Format

Share Document