scholarly journals Improved Cost Computation and Adaptive Shape Guided Filter for Local Stereo Matching of Low Texture Stereo Images

2020 ◽  
Vol 10 (5) ◽  
pp. 1869
Author(s):  
Hua Liu ◽  
Rui Wang ◽  
Yuanping Xia ◽  
Xiaoming Zhang

Dense stereo matching has been widely used in photogrammetry and computer vision applications. Even though it has a long research history, dense stereo matching is still challenging for occluded, textureless and discontinuous regions. This paper proposed an efficient and effective matching cost measurement and an adaptive shape guided filter-based matching cost aggregation method to improve the stereo matching performance for large textureless regions. At first, an efficient matching cost function combining enhanced image gradient-based matching cost and improved census transform-based matching cost is introduced. This proposed matching cost function is robust against radiometric variations and textureless regions. Following this, an adaptive shape cross-based window is constructed for each pixel and a modified guided filter based on this adaptive shape window is implemented for cost aggregation. The final disparity map is obtained after disparity selection and multiple steps disparity refinement. Experiments were conducted on the Middlebury benchmark dataset to evaluate the effectiveness of the proposed cost measurement and cost aggregation strategy. The experimental results demonstrated that the average matching error rate on Middlebury standard image pairs is 9.40%. Compared with the traditional guided filter-based stereo matching method, the proposed method achieved a better matching result in textureless regions.

Author(s):  
T. Y. Chuang ◽  
H. W. Ting ◽  
J. J. Jaw

Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.


Author(s):  
T. Y. Chuang ◽  
H. W. Ting ◽  
J. J. Jaw

Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1430
Author(s):  
Xiaogang Jia ◽  
Wei Chen ◽  
Zhengfa Liang ◽  
Xin Luo ◽  
Mingfei Wu ◽  
...  

Stereo matching is an important research field of computer vision. Due to the dimension of cost aggregation, current neural network-based stereo methods are difficult to trade-off speed and accuracy. To this end, we integrate fast 2D stereo methods with accurate 3D networks to improve performance and reduce running time. We leverage a 2D encoder-decoder network to generate a rough disparity map and construct a disparity range to guide the 3D aggregation network, which can significantly improve the accuracy and reduce the computational cost. We use a stacked hourglass structure to refine the disparity from coarse to fine. We evaluated our method on three public datasets. According to the KITTI official website results, Our network can generate an accurate result in 80 ms on a modern GPU. Compared to other 2D stereo networks (AANet, DeepPruner, FADNet, etc.), our network has a big improvement in accuracy. Meanwhile, it is significantly faster than other 3D stereo networks (5× than PSMNet, 7.5× than CSN and 22.5× than GANet, etc.), demonstrating the effectiveness of our method.


2020 ◽  
Author(s):  
Chih-Shuan Huang ◽  
Ya-Han Huang ◽  
Din-Yuen Chan ◽  
Jar-Ferr Yang

Abstract Stereo matching is one of the most important topics in computer vision and aims at generating precise depth maps for various applications. The main challenge of stereo matching is to suppress inevitable errors occurring in smooth, occluded and discontinuous regions. To solve the aforementioned problems, in this paper, the proposed robust stereo matching system by using segment-based superpixels and magapixels to design adaptive stereo matching computation and dual-path refinement. After determination for edge and smooth regions and selection of matching cost, we suggest the segment–based adaptive support weights in cost aggregation instead of color similarity and spatial proximity only. The proposed dual-path depth refinements utilize the cross-based support region by referring texture features to correct the inaccurate disparities with iterative procedures to improve the depth maps for shape reserving. Specially for left-most and right most regions, the segment-based refinement can greatly improve the mismatched disparity holes. The experimental results demonstrate that the proposed system can obtain higher accurate depth maps compared with the conventional methods.


Author(s):  
A. F. Kadmin ◽  
◽  
R. A. Hamzah ◽  
M. N. Abd Manap ◽  
M. S. Hamid ◽  
...  

Stereo matching is a significant subject in the stereo vision algorithm. Traditional taxonomy composition consists of several issues in the stereo correspondences process such as radiometric distortion, discontinuity, and low accuracy at the low texture regions. This new taxonomy improves the local method of stereo matching algorithm based on the dynamic cost computation for disparity map measurement. This method utilised modified dynamic cost computation in the matching cost stage. A modified Census Transform with dynamic histogram is used to provide the cost volume. An adaptive bilateral filtering is applied to retain the image depth and edge information in the cost aggregation stage. A Winner Takes All (WTA) optimisation is applied in the disparity selection and a left-right check with an adaptive bilateral median filtering are employed for final refinement. Based on the dataset of standard Middlebury, the taxonomy has better accuracy and outperformed several other state-ofthe-art algorithms. Keywords—Stereo matching, disparity map, dynamic cost, census transform, local method


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Lingyin Kong ◽  
Jiangping Zhu ◽  
Sancong Ying

Adaptive cross-region-based guided image filtering (ACR-GIF) is a commonly used cost aggregation method. However, the weights of points in the adaptive cross-region (ACR) are generally not considered, which affects the accuracy of disparity results. In this study, we propose an improved cost aggregation method to address this issue. First, the orthogonal weight is proposed according to the structural feature of the ACR, and then the orthogonal weight of each point in the ACR is computed. Second, the matching cost volume is filtered using ACR-GIF with orthogonal weights (ACR-GIF-OW). In order to reduce the computing time of the proposed method, an efficient weighted aggregation computing method based on orthogonal weights is proposed. Additionally, by combining ACR-GIF-OW with our recently proposed matching cost computation method and disparity refinement method, a local stereo matching algorithm is proposed as well. The results of Middlebury evaluation platform show that, compared with ACR-GIF, the proposed cost aggregation method can significantly improve the disparity accuracy with less additional time overhead, and the performance of the proposed stereo matching algorithm outperforms other state-of-the-art local and nonlocal algorithms.


Author(s):  
Yanyan Xu ◽  
◽  
Xiangyang Xu ◽  
Rui Yu

A disparity optimization algorithm based on an improved guided filter is proposed to smooth the disparity image. A well-known problem to local stereo matching is the low matching accuracy and staircase effect in regions with weak texture and slope. Our disparity optimization method solves this problem and achieve a smooth disparity. First, the initial disparity image is obtained by a local stereo matching algorithm using segment tree. Then, the guided filter is improved by using gradient domain information. Lastly, the improved guided filter is adopted as the disparity optimization method to smooth the disparity image. Experiments conducted on the Middlebury data sets demonstrate that by using the proposed algorithm in this paper, the smoothness of the disparity map in slope regions is improved, and a higher precision of dense disparity is obtained.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Chengtao Zhu ◽  
Yau-Zen Chang

This paper presents an effective cost aggregation strategy for dense stereo matching. Based on the guided image filtering (GIF), we propose a new aggregation scheme called Pervasive Guided Image Filtering (PGIF) to introduce weightings to the energy function of the filter which allows the whole image pair to be taken into account. The filter parameters of PGIF are calculated as two-dimensional convolution using the bright and spatial differences between the corresponding pixels, which can be incrementally calculated for efficient aggregation. The complexity of the proposed algorithm is O(N), which is linear to the number of image pixels. Furthermore, the algorithm can be further simplified into O(N/4) without significantly sacrificing accuracy if subsampling is applied in the stage of parameter calculation. We also found that a step function to attenuate noise is required in calculating the weights. Experimental evaluation on version 3 of the Middlebury stereo evaluation datasets shows that the proposed method achieves superior disparity accuracy over state-of-the-art aggregation methods with comparable processing speed.


2014 ◽  
Vol 536-537 ◽  
pp. 67-76
Author(s):  
Xiang Zhang ◽  
Zhang Wei Chen

This paper proposes a FPGA implementation to apply a stereo matching algorithm based on a kind of sparse census transform in a FPGA chip which can provide a high-definition dense disparity map in real-time. The parallel stereo matching algorithm core involves census transform, cost calculation and cost aggregation modules. The circuits of the algorithm core are modeled by the Matlab/Simulink-based tool box: DSP Builder. The system can process many different sizes of stereo pair images through a configuration interface. The maximum horizon resolution of stereo images is 2048.


Sign in / Sign up

Export Citation Format

Share Document