scholarly journals A Customized Semantic Segmentation Network for the Fingerprint Singular Point Detection

2020 ◽  
Vol 10 (11) ◽  
pp. 3868
Author(s):  
Jiong Chen ◽  
Heng Zhao ◽  
Zhicheng Cao ◽  
Fei Guo ◽  
Liaojun Pang

As one of the most important and obvious global features for fingerprints, the singular point plays an essential role in fingerprint registration and fingerprint classification. To date, the singular point detection methods in the literature can be generally divided into two categories: methods based on traditional digital image processing and those on deep learning. Generally speaking, the former requires a high-precision fingerprint orientation field for singular point detection, while the latter just needs the original fingerprint image without preprocessing. Unfortunately, detection rates of these existing methods, either of the two categories above, are still unsatisfactory, especially for the low-quality fingerprint. Therefore, regarding singular point detection as a semantic segmentation of the small singular point area completely and directly, we propose a new customized convolutional neural network called SinNet for segmenting the accurate singular point area, followed by a simple and fast post-processing to locate the singular points quickly. The performance evaluation conducted on the publicly Singular Points Detection Competition 2010 (SPD2010) dataset confirms that the proposed method works best from the perspective of overall indexes. Especially, compared with the state-of-art algorithms, our proposal achieves an increase of 10% in the percentage of correctly detected fingerprints and more than 16% in the core detection rate.

2011 ◽  
Vol 403-408 ◽  
pp. 4499-4506 ◽  
Author(s):  
Ravinder Kumar ◽  
Pravin Chandra ◽  
M. Hanmandlu

Singular point detection is the most important step in Automatic Fingerprint Identification System (AFIS) and is used in fingerprint alignment, fingerprint matching, and particularly in classification. The computation of orientation field of a fingerprint can be verified by computing orientation field reliability. The most unreliable portion in orientation field can be the possible location of singular points. In this paper we have proposed a novel algorithm for detecting singular points using reliability of the fingerprint orientation field. Experimental results show that the proposed algorithm accurately detects singular points (core and delta) with the detection rate of 92.6 %.


Author(s):  
Gustavo Drets ◽  
Hans Liljenström

This paper presents a novel approach to fingerprint singular point detection. Singular points (cores and deltas) are used for fingerprint classification, sub-classification and registration. This method exploits the stability of the directional field pattern extracted from singular point regions at different resolution levels. The procedure is invariant to translations, scaling and small rotations. A fingerprint sub-classification procedure was built based on the proposed singular point detection method. Two kinds of tests were conducted on a subset consisting of 955 NIST-14 fingerprint images. First, automatic and forensic expert sub-classifications were compared. Second, the consistency of the proposed method was measured comparing automatic sub-classification for two different rolls of the same fingerprint.


Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 786
Author(s):  
Ngoc Tuyen Le ◽  
Duc Huy Le ◽  
Jing-Wein Wang ◽  
Chih-Chiang Wang

Fingerprints have long been used in automated fingerprint identification or verification systems. Singular points (SPs), namely the core and delta point, are the basic features widely used for fingerprint registration, orientation field estimation, and fingerprint classification. In this study, we propose an adaptive method to detect SPs in a fingerprint image. The algorithm consists of three stages. First, an innovative enhancement method based on singular value decomposition is applied to remove the background of the fingerprint image. Second, a blurring detection and boundary segmentation algorithm based on the innovative image enhancement is proposed to detect the region of impression. Finally, an adaptive method based on wavelet extrema and the Henry system for core point detection is proposed. Experiments conducted using the FVC2002 DB1 and DB2 databases prove that our method can detect SPs reliably.


2014 ◽  
Vol 41 (2) ◽  
pp. 752-764 ◽  
Author(s):  
Jing-Ming Guo ◽  
Yun-Fu Liu ◽  
Jla-Yu Chang ◽  
Jiann-Der Lee

Author(s):  
Matthew B. Creasy ◽  
Wade Travis Tinkham ◽  
Chad M. Hoffman ◽  
Jody C. Vogeler

Characterization of forest structure is important for management-related decision making, monitoring, and adaptive management. Increasingly, observations of forest structure are needed at both finer resolutions and across greater extents to support spatially explicit management planning. Unmanned aerial system (UAS)-based photogrammetry provides an airborne method of forest structure data acquisition at a significantly lower cost and time commitment than existing methods such as airborne laser scanning (LiDAR). This study utilizes nearly 5,000 stem-mapped trees in ponderosa pine-dominated forests to evaluate several algorithms for detecting individual tree locations and characterizing crown area across tree sizes. Our results indicate that adaptive variable-window detection methods with UAS-based canopy height models have greater tree detection rates compared to fixed window analysis across a range of tree sizes. Using the UAS approach, probability of detecting individual trees decreases from 97% for dominant overstory to 67% for suppressed understory trees. Additionally, crown radii were correctly determined within 0.5 m for approximately two-thirds of sampled trees. These findings highlight the potential for UAS photogrammetry to characterize forest structure through the detection of trees and tree groups in open-canopy ponderosa pine forests. Further work should investigate how these methods transfer to more diverse species compositions and forest structures.


Physica B+C ◽  
1977 ◽  
Vol 86-88 ◽  
pp. 210-212 ◽  
Author(s):  
R. Gröβinger ◽  
W. Steiner ◽  
F. Culetto ◽  
H. Kirchmayr

Sign in / Sign up

Export Citation Format

Share Document