scholarly journals An Improved Grey Wolf Optimizer Based on Differential Evolution and OTSU Algorithm

2020 ◽  
Vol 10 (18) ◽  
pp. 6343
Author(s):  
Yuanyuan Liu ◽  
Jiahui Sun ◽  
Haiye Yu ◽  
Yueyong Wang ◽  
Xiaokang Zhou

Aimed at solving the problems of poor stability and easily falling into the local optimal solution in the grey wolf optimizer (GWO) algorithm, an improved GWO algorithm based on the differential evolution (DE) algorithm and the OTSU algorithm is proposed (DE-OTSU-GWO). The multithreshold OTSU, Tsallis entropy, and DE algorithm are combined with the GWO algorithm. The multithreshold OTSU algorithm is used to calculate the fitness of the initial population. The population is updated using the GWO algorithm and the DE algorithm through the Tsallis entropy algorithm for crossover steps. Multithreshold OTSU calculates the fitness in the initial population and makes the initial stage basically stable. Tsallis entropy calculates the fitness quickly. The DE algorithm can solve the local optimal solution of GWO. The performance of the DE-OTSU-GWO algorithm was tested using a CEC2005 benchmark function (23 test functions). Compared with existing particle swarm optimizer (PSO) and GWO algorithms, the experimental results showed that the DE-OTSU-GWO algorithm is more stable and accurate in solving functions. In addition, compared with other algorithms, a convergence behavior analysis proved the high quality of the DE-OTSU-GWO algorithm. In the results of classical agricultural image recognition problems, compared with GWO, PSO, DE-GWO, and 2D-OTSU-FA, the DE-OTSU-GWO algorithm had accuracy in straw image recognition and is applicable to practical problems. The OTSU algorithm improves the accuracy of the overall algorithm while increasing the running time. After adding the DE algorithm, the time complexity will increase, but the solution time can be shortened. Compared with GWO, DE-GWO, PSO, and 2D-OTSU-FA, the DE-OTSU-GWO algorithm has better results in segmentation assessment.

2012 ◽  
Vol 452-453 ◽  
pp. 1491-1495
Author(s):  
Shu Hua Wen ◽  
Qing Bo Lu ◽  
Xue Liang Zhang

Differential Evolution (DE) is one kind of evolution algorithm, which based on difference of individuals. DE has exhibited good performance on optimization problem. However, when a local optimal solution is reached with classical Differential Evolution, all individuals in the population gather around it, and escaping from these local optima becomes difficult. To avoid premature convergence of DE, we present in this paper a novel variant of DE algorithm, called SSDE, which uses the stratified sampling method to replace the random sampling method. The proposed SSDE algorithm is compared with some variant DE. The numerical results show that our approach is robust, competitive and fast.


2013 ◽  
Vol 756-759 ◽  
pp. 3231-3235
Author(s):  
Xue Mei Wang ◽  
Jin Bo Wang

According to the defects of classical k-means clustering algorithm such as sensitive to the initial clustering center selection, the poor global search ability, falling into the local optimal solution. A differential evolution algorithm which was a kind of a heuristic global optimization algorithm based on population was introduced in this article, then put forward an improved differential evolution algorithm combined with k-means clustering algorithm at the same time. The experiments showed that the method has solved initial centers optimization problem of k-means clustering algorithm well, had a better searching ability,and more effectively improved clustering quality and convergence speed.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1457
Author(s):  
Avelina Alejo-Reyes ◽  
Erik Cuevas ◽  
Alma Rodríguez ◽  
Abraham Mendoza ◽  
Elias Olivares-Benitez

Supplier selection and order quantity allocation have a strong influence on a company’s profitability and the total cost of finished products. From an optimization perspective, the processes of selecting the right suppliers and allocating orders are modeled through a cost function that considers different elements, such as the price of raw materials, ordering costs, and holding costs. Obtaining the optimal solution for these models represents a complex problem due to their discontinuity, non-linearity, and high multi-modality. Under such conditions, it is not possible to use classical optimization methods. On the other hand, metaheuristic schemes have been extensively employed as alternative optimization techniques to solve difficult problems. Among the metaheuristic computation algorithms, the Grey Wolf Optimization (GWO) algorithm corresponds to a relatively new technique based on the hunting behavior of wolves. Even though GWO allows obtaining satisfying results, its limited exploration reduces its performance significantly when it faces high multi-modal and discontinuous cost functions. In this paper, a modified version of the GWO scheme is introduced to solve the complex optimization problems of supplier selection and order quantity allocation. The improved GWO method called iGWO includes weighted factors and a displacement vector to promote the exploration of the search strategy, avoiding the use of unfeasible solutions. In order to evaluate its performance, the proposed algorithm has been tested on a number of instances of a difficult problem found in the literature. The results show that the proposed algorithm not only obtains the optimal cost solutions, but also maintains a better search strategy, finding feasible solutions in all instances.


2018 ◽  
Vol 8 (3) ◽  
pp. 39 ◽  
Author(s):  
Chaiya Chomchalao ◽  
Sasitorn Kaewman ◽  
Rapeepan Pitakaso ◽  
Kanchana Sethanan

This paper presents an algorithm to solve the multilevel location–allocation problem when sabotage risk is considered (MLLAP-SB). Sabotage risk is the risk that a deliberate act of sabotage will happen in a living area or during the transportation of a vehicle. This can change the way decisions are made about the transportation problem when it is considered. The mathematical model of the MLLAP-SB is first presented and solved to optimality by using Lingo v. 11 optimization software, but it can solve only small numbers of test instances. Second, two heuristics are presented to solve large numbers of test instances that Lingo cannot solve to optimality within a reasonable time. The original differential evolution (DE) algorithm and the extended version of DE—the modified differential evolution (MDE) algorithm—are presented to solve the MLLAP-SB. From the computational result, when solving small numbers of test instances in which Lingo is able to find the optimality, DE and MDE are able to find a 100% optimal solution while requiring much lower computational time. Lingo uses an average 96,156.67 s to solve the problem, while DE and MDE use only 104 and 90 s, respectively. Solving large numbers of test instances where Lingo cannot solve the problem, MDE outperformed DE, as it found a 100% better solution than DE. MDE has an average 0.404% lower cost than DE when using a computational time of 90 min. The difference in cost between MDE and DE changes from 0.08% when using 10 min to 0.54% when using 100 min computational time. The computational result also explicitly shows that when sabotage risk is integrated into the method of solving the problem, it can reduce the average total cost from 32,772,361 baht to 30,652,360 baht, corresponding to a 9.61% reduction.


2018 ◽  
Vol 12 (7) ◽  
pp. 73 ◽  
Author(s):  
Esra F. Alzaghoul ◽  
Sandi N. Fakhouri

Grey wolf Optimizer (GWO) is one of the well known meta-heuristic algorithm for determining the minimum value among a set of values. In this paper, we proposed a novel optimization algorithm called collaborative strategy for grey wolf optimizer (CSGWO). This algorithm enhances the behaviour of GWO that enhances the search feature to search for more points in the search space, whereas more groups will search for the global minimal points. The algorithm has been tested on 23 well-known benchmark functions and the results are verified by comparing them with state of the art algorithms: Polar particle swarm optimizer, sine cosine Algorithm (SCA), multi-verse optimizer (MVO), supernova optimizer as well as particle swarm optimizer (PSO). The results show that the proposed algorithm enhanced GWO behaviour for reaching the best solution and showed competitive results that outperformed the compared meta-heuristics over the tested benchmarked functions.


2013 ◽  
Vol 380-384 ◽  
pp. 3854-3857
Author(s):  
Jian Wen Han ◽  
Lei Hong

According to the defects of classical k-means clustering algorithm such as sensitive to the initial clustering center selection, the poor global search ability, falling into the local optimal solution. A differential evolution algorithm which was a kind of a heuristic global optimization algorithm based on population was introduced in this article, then put forward an improved differential evolution algorithm combined with k-means clustering algorithm at the same time. The experiments showed that the method has solved initial centers optimization problem of k-means clustering algorithm well, had a better searching ability,and more effectively improved clustering quality and convergence speed


2020 ◽  
Vol 13 (6) ◽  
pp. 168-178
Author(s):  
Pyae Cho ◽  
◽  
Thi Nyunt ◽  

Differential Evolution (DE) has become an advanced, robust, and proficient alternative technique for clustering on account of their population-based stochastic and heuristic search manners. Balancing better the exploitation and exploration power of the DE algorithm is important because this ability influences the performance of the algorithm. Besides, keeping superior solutions for the initial population raises the probability of finding better solutions and the rate of convergence. In this paper, an enhanced DE algorithm is introduced for clustering to offer better cluster solutions with faster convergence. The proposed algorithm performs a modified mutation strategy to improve the DE’s search behavior and exploits Quasi-Opposition-based Learning (QBL) to choose fitter initial solutions. This mutation strategy that uses the best solution as a target solution and applies three differentials contributes to avoiding local optima trap and slow convergence. The QBL based initialization method also contributes to increasing the quality of the clustering results and convergence rate. The experimental analysis was conducted on seven real datasets from the UCI repository to evaluate the performance of the proposed clustering algorithm. The obtained results showed that the proposed algorithm achieves more compact clusters and stable solutions than the competing conventional DE variants. Moreover, the performance of the proposed algorithm was compared with the existing state of the art clustering techniques based on DE. The corresponding results also pointed out that the proposed algorithm is comparable to other DE based clustering approaches in terms of the value of the objective functions. Therefore, the proposed algorithm can be regarded as an efficient clustering tool.


Author(s):  
Vibha Verma ◽  
Neha Neha ◽  
Anu G. Aggarwal

This chapter presents the application of grey wolf optimizer in software release planning considering warranty based on the proposed mathematical model that measures reliability growth of software systems. Hence, optimal release and warranty time is determined while minimizing the overall software development cost. The software cost model is based on failure phenomenon modelled by incorporating fault removal efficiency, fault reduction factor, and error generation. The model has been validated on the fault dataset of ERP systems. Sensitivity analysis has been carried out to study the discrete changes in the cost parameter due to changes in optimal solution. The work significantly contributes to the literature by fulfilling gaps of reliability growth models, release problems considering warranty, and efficient ways for solving optimization problems. Further, the grey wolf optimizer result has been compared with genetic algorithm and particle swarm optimization techniques.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Linguo Li ◽  
Lijuan Sun ◽  
Jian Guo ◽  
Jin Qi ◽  
Bin Xu ◽  
...  

The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO), which improves on the optimal solution updating mechanism of the search agent by the weights. Taking Kapur’s entropy as the optimized function and based on the discreteness of threshold in image segmentation, the paper firstly discretizes the grey wolf optimizer (GWO) and then proposes a new attack strategy by using the weight coefficient to replace the search formula for optimal solution used in the original algorithm. The experimental results show that MDGWO can search out the optimal thresholds efficiently and precisely, which are very close to the result examined by exhaustive searches. In comparison with the electromagnetism optimization (EMO), the differential evolution (DE), the Artifical Bee Colony (ABC), and the classical GWO, it is concluded that MDGWO has advantages over the latter four in terms of image segmentation quality and objective function values and their stability.


Sign in / Sign up

Export Citation Format

Share Document