scholarly journals Evolution Characteristics of Separated Vortices and Near-Wall Flow in a Centrifugal Impeller in an Off-Designed Condition

2020 ◽  
Vol 10 (22) ◽  
pp. 8209
Author(s):  
Shihao Zhou ◽  
Peifeng Lin ◽  
Wei Zhang ◽  
Zuchao Zhu

Flow separation is undesirable and lowers the efficiency of centrifugal impellers. In this study, the evolution characteristics of separated vortices in a centrifugal impeller are studied under the off-designed flow rate condition. Unsteady Reynolds-Averaged Navier–Stokes (URANS) with standard k-ε turbulent model is applied to simulate the alternating stall in the six-blade centrifugal impeller. We present and analyze the distributions of pressure gradient (either adverse or favorable) and skin friction coefficients on both sides of the blade for the stalled and unstalled passages to study the relationship between pressure gradient and separation of boundary layer flow. The evolution of skin friction coefficient is also presented at various axial cross sections. Numerical results reveal that, for the stalled passage, the increase in adverse pressure gradient on the pressure surface near the middle of the blade (S/S0 = 0.4) is much larger than that of the suction surface during a vortex formation cycle. The skin friction coefficient on the pressure surface also increases in magnitude sharply and the variation shows a peak-valley trend, while the coefficient on the suction surface increases slowly. Comparing the distribution of skin friction coefficient on the pressure surface of the same blade at different axial cross sections, it is found that the skin friction coefficient notably increases at S/S0 = 0.6 on the middle axial cross section (Z/b2 = 0.5). For the unstalled passage, both the pressure and suction surfaces produce favorable pressure gradients. The skin friction coefficient on the pressure surface shows an increasing trend around S/S0 = 0.5, and a large vortex can be seen at the exit of the impeller. The variation of skin friction coefficient on the suction surface is relatively mild; thus, the flow is relatively stable. It is clarified that the effect of adverse pressure gradient and wall shear stress jointly cause separation of the boundary layer; thus, the separated vortices are generated in the rotating impeller and deteriorate the performance of the impeller.

Author(s):  
Pranav Joshi ◽  
Joseph Katz

The goal of this research is to study the effect of favorable pressure gradient (FPG) on the near wall structures of a turbulent boundary layer on a smooth wall. 2D-PIV measurements have been performed in a sink flow, initially at a coarse resolution, to characterize the development of the mean flow and (under resolved) Reynolds stresses. Lack of self-similarity of mean velocity profiles shows that the boundary layer does not attain the sink flow equilibrium. In the initial phase of acceleration, the acceleration parameter, K = v/U2dU/dx, increases from zero to 0.575×10−6, skin friction coefficient decreases and mean velocity profiles show a log region, but lack universality. Further downstream, K remains constant, skin friction coefficient increases and the mean velocity profiles show a second log region away from the wall. In the initial part of the FPG region, all the Reynolds stress components decrease over the entire boundary layer. In the latter phase, they continue to decrease in the middle of the boundary layer, and increase significantly close to the wall (below y∼0.15δ), where they collapse when normalized with the local freestream velocity. Turbulence production and wallnormal transport, scaled with outer units, show self-similar profiles close to the wall in the constant K region. Spanwise-streamwise plane data shows evidence of low speed streaks in the log layer, with widths scaling with the boundary layer thickness.


1954 ◽  
Vol 58 (518) ◽  
pp. 109-121 ◽  
Author(s):  
J. H. Preston

SummaryA simple method of determining local turbulent skin friction on a smooth surface has been developed which utilises a round pitot tube resting on the surface. Assuming the existence of a region near the surface in which conditions are functions only of the skin friction, the relevant physical constants of the fluid and a suitable length, a universal non-dimensional relation is obtained for the difference between the total pressure recorded by the tube and the static pressure at the wall, in terms of the skin friction. This relation, on this assumption, is independent of the pressure gradient. The truth and form of the relation were first established, to a considerable degree of accuracy, in a pipe using four geometrically similar round pitot tubes—the diameter being taken as representative length. These four pitot tubes were then used to determine the local skin friction coefficient at three stations on a wind tunnel wall, under varying conditions of pressure gradient. At each station, within the limits of experimental accuracy, the deduced skin friction coefficient was found to be the same for each pitot tube, thus confirming the basic assumption and leaving little doubt as to the correctness of the skin friction so found. Pitot traverses were then made in the pipe and in the boundary layer on the wind tunnel wall. The results were plotted in two non-dimensional forms on the basis already suggested and they fell close together in a region whose outer limit represented the breakdown of the basic assumption, but close to the wall the results spread out, due to the unknown displacement of the effective centre of a pitot tube near a wall. This again provides further evidence of the existence of a region of local dynamical similarity and of the correctness of the skin friction deduced from measurements with round pitot tubes on the wind tunnel wall. The extent of the region in which the local dynamical similarity may be expected to hold appears to vary from about 1/5 to 1/20 of the boundary-layer thickness for conditions remote from, and close to, separation respectively.


Author(s):  
R Tabassum ◽  
Rashid Mehmood ◽  
O Pourmehran ◽  
NS Akbar ◽  
M Gorji-Bandpy

The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux.


1983 ◽  
Vol 27 (03) ◽  
pp. 147-157 ◽  
Author(s):  
A. J. Smits ◽  
N. Matheson ◽  
P. N. Joubert

This paper reports the results of an extensive experimental investigation into the mean flow properties of turbulent boundary layers with momentum-thickness Reynolds numbers less than 3000. Zero pressure gradient and favorable pressure gradients were studied. The velocity profiles displayed a logarithmic region even at very low Reynolds numbers (as low as Rθ = 261). The results were independent of the leading-edge shape, and the pin-type turbulent stimulators performed well. It was found that the shape and Clauser parameters were a little higher than the correlation proposed by Coles [10], and the skin friction coefficient was a little lower. The skin friction coefficient behavior could be fitted well by a simple power-law relationship in both zero and favorable pressure gradients.


Sign in / Sign up

Export Citation Format

Share Document