scholarly journals Energy Absorption of Aluminium Extrusions Filled with Cellular Materials Under Axial Crushing: Study of the Interaction Effect

2020 ◽  
Vol 10 (23) ◽  
pp. 8510
Author(s):  
Javier Paz ◽  
Miguel Costas ◽  
Jordi Delgado ◽  
Luis Romera ◽  
Jacobo Díaz

This investigation focuses on the interaction effect during the quasi-static axial crushing of circular and square thin-walled aluminium extrusions filled with polymeric foam or cork. The increment in the absorbed energy due to interactions between materials was assessed using a validated numerical model calibrated with experimental material data. Simulations were run with variable cross-section dimensions, thickness, and foam density. The results were used to adjust the parameters of design formulas to predict the average crush forces of foam- and cork-filled thin-walled tubes. The analysis of the energy dissipation per unit volume revealed that the highest increments due to the interaction between materials appeared in the foam-filled square extrusions. Energy dissipation increased with higher density foams for both cross-sections due to a stronger constraint of the aluminium walls, and thus a reduction of the folding length. Thinner tube walls also delivered a higher improvement in the energy dissipation per unit volume than those with thicker walls. The contribution of friction was also quantified and investigated.

2021 ◽  
Author(s):  
Shengrong Xie ◽  
Yiyi Wu ◽  
Dongdong Chen ◽  
Ruipeng Liu ◽  
Xintao Han ◽  
...  

Abstract In deep underground mining, achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge. Owing to the coupling action of multiple factors such as deep high stress, adjacent faults, cross-layer design, weak lithology, broken surrounding rock, variable cross-sections, wide sections up to 9.9 m, and clusters of nearby chambers, there was severe deformation and breakdown in the No. 10 intersection of the roadway of large-scale variable cross-section at the − 760 m level in the Nanfeng working area of the Wuyang Coal Mine. As there are insufficient examples in engineering methods pertaining to the geological environment described above, the numerical calculation model was oversimplified and support theory underdeveloped; therefore, it is imperative to develop an effective support system for the stability and sustenance of deep roadways. In this study, a quantitative analysis of the geological environment of the roadway through field observations, borehole peeking, and ground stress testing is carried out to establish the FLAC 3D variable cross-section crossing roadway model. This model is combined with the strain softening constitutive (surrounding rock) and Mohr-Coulomb constitutive (other deep rock formations) models to construct a compression arch mechanical model for deep soft rock, based on the quadratic parabolic Mohr criterion. An integrated control technology of bolting and grouting that is mainly composed of a high-strength hollow grouting cable bolt equipped with modified cement grouting materials and a high-elongation cable bolt is developed by analyzing the strengthening properties of the surrounding rock before and after bolting, based on the Heok-Brown criterion. As a result of on-site practice, the following conclusions are drawn: (1) The plastic zone of the roof of the cross roadway is approximately 6 m deep in this environment, the tectonic stress is nearly 30 MPa, and the surrounding rock is severely fractured. (2) The deformation of the roadway progressively increases from small to large cross-sections, almost doubling at the largest cross-section. The plastic zone is concentrated at the top plate and shoulder and decreases progressively from the two sides to the bottom corner. The range of stress concentration at the sides of the intersection roadway close to the passageway is wider and higher. (3) The 7 m-thick reinforced compression arch constructed under the strengthening support scheme has a bearing capacity enhanced by 1.8 to 2.3 times and increase in thickness of the bearing structure by 1.76 times as compared to the original scheme. (4) The increase in the mechanical parameters c and φ of the surrounding rock after anchoring causes a significant increase in σc and σt; the pulling force of the cable bolt beneath the new grouting material is more than twice that of ordinary cement grout, and according to the test, the supporting stress field shows that the 7.24 m surrounding rock is compacted and strengthened in addition to providing a strong foundation for the bolt (cable). On-site monitoring shows that the 60-day convergence is less than 30 mm, indicating that the stability control of the roadway is successful.


Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 970
Author(s):  
J. Israel Martínez-López ◽  
Héctor Andrés Betancourt Cervantes ◽  
Luis Donaldo Cuevas Iturbe ◽  
Elisa Vázquez ◽  
Edisson A. Naula ◽  
...  

In this paper, we characterized an assortment of photopolymers and stereolithography processes to produce 3D-printed molds and polydimethylsiloxane (PDMS) castings of micromixing devices. Once materials and processes were screened, the validation of the soft tooling approach in microfluidic devices was carried out through a case study. An asymmetric split-and-recombine device with different cross-sections was manufactured and tested under different regime conditions (10 < Re < 70). Mixing performances between 3% and 96% were obtained depending on the flow regime and the pitch-to-depth ratio. The study shows that 3D-printed soft tooling can provide other benefits such as multiple cross-sections and other potential layouts on a single mold.


2015 ◽  
Vol 799-800 ◽  
pp. 439-442
Author(s):  
Ya Zhang ◽  
Dae Hwan Yoon ◽  
Dong Won Jung

Roll forming is a highly useful and important forming technique for sheet metal. As an economic profile product, roll forming products are widely used in transportation, engineering machinery, and civil construction because of their uniform sections, high strength, and low energy consumption[1]. Roll forming is a rapid processing operation used for transforming flat sheets of material into useful profiled sections. However, a lot of components used in the automobile, railway cars, ship construction, and building industries have variable cross sections. Therefore, flexible roll forming was developed recently to produce variable cross section profiles.


Sign in / Sign up

Export Citation Format

Share Document