scholarly journals Floating Offshore Wind Farms in Italy beyond 2030 and beyond 2060: Preliminary Results of a Techno-Economic Assessment

2020 ◽  
Vol 10 (24) ◽  
pp. 8899
Author(s):  
Laura Serri ◽  
Lisa Colle ◽  
Bruno Vitali ◽  
Tullia Bonomi

At the end of 2019, 10.5 GW of wind capacity was installed in Italy, all onshore. The National Integrated Climate and Energy Plan sets a target of 18.4 GW of onshore wind capacity and 0.9 GW of offshore wind capacity by 2030. Significant exploitation of offshore wind resources in Italy is expected after 2030, using floating wind turbines, suitable for water depths greater than 50 m. This technology is at the demonstration phase at present. Results of a preliminary techno-economic assessment of floating wind plants in Italian marine areas in a medium (2030) and long-term (2060) scenario are presented. In 2030, a reference park with 10 MW wind turbines will be defined, and parametric costs, depending on distance from shore, were assessed. In 2060, possible wind resource variations due to climate change, and cost reductions due to large diffusion of the technology were considered in three case studies. The economic model used was the simple Levelized Cost of Energy (sLCoE). Different values of Weighted Average Cost of Capital (WACC) were considered too. The results show LCoEs comparable to the ones expected for the sector in 2030. In 2060, even in the more pessimistic scenario, wind resource decreases will be abundantly compensated by expected cost reductions.

Author(s):  
S. Márquez-Domínguez ◽  
J. D. Sørensen

Deeper waters and harsher environments are the main factors that make the electricity generated by offshore wind turbines (OWTs) expensive due to high costs of the substructure, operation & maintenance and installation. The key goal of development is to decrease the cost of energy (CoE). In consequence, a rational treatment of uncertainties is done in order to assess the reliability of critical details in OWTs. Limit state equations are formulated for fatigue critical details which are not influenced by wake effects generated in offshore wind farms. Furthermore, typical bi-linear S-N curves are considered for reliability verification according to international design standards of OWTs. System effects become important for each substructure with many potential fatigue hot spots. Therefore, in this paper a framework for system effects is presented. This information can be e.g. no detection of cracks in inspections or measurements from condition monitoring systems. Finally, an example is established to illustrate the practical application of this framework for jacket type wind turbine substructure considering system effects.


2017 ◽  
Vol 9 (6) ◽  
pp. 1461-1484 ◽  
Author(s):  
Long Wang ◽  
Guoping Chen ◽  
Tongguang Wang ◽  
Jiufa Cao

AbstractWith lower turbulence and less rigorous restrictions on noise levels, offshore wind farms provide favourable conditions for the development of high-tip-speed wind turbines. In this study, the multi-objective optimization is presented for a 5MW wind turbine design and the effects of high tip speed on power output, cost and noise are analysed. In order to improve the convergence and efficiency of optimization, a novel type of gradient-based multi-objective evolutionary algorithm is proposed based on uniform decomposition and differential evolution. Optimization examples of the wind turbines indicate that the new algorithm can obtain uniformly distributed optimal solutions and this algorithm outperforms the conventional evolutionary algorithms in convergence and optimization efficiency. For the 5MW wind turbines designed, increasing the tip speed can greatly reduce the cost of energy (COE). When the tip speed increases from 80m/s to 100m/s, under the same annual energy production, the COE decreases by 3.2% in a class I wind farm and by 5.1% in a class III one, respectively, while the sound pressure level increases by a maximum of 4.4dB with the class III wind farm case.


2021 ◽  
Vol 239 ◽  
pp. 109923
Author(s):  
Yibo Liang ◽  
Yu Ma ◽  
Haibin Wang ◽  
Ana Mesbahi ◽  
Byongug Jeong ◽  
...  

2021 ◽  
Author(s):  
Marcus Klose ◽  
Junkan Wang ◽  
Albert Ku

Abstract In the past, most of the offshore wind farms have been installed in European countries. In contrast to offshore wind projects in European waters, it became clear that the impact from earthquakes is expected to be one of the major design drivers for the wind turbines and their support structures in other areas of the world. This topic is of high importance in offshore markets in the Asian Pacific region like China, Taiwan, Japan, Korea as well as parts of the United States. So far, seismic design for wind turbines is not described in large details in existing wind energy standards while local as well as international offshore oil & gas standards do not consider the specifics of modern wind turbines. In 2019, DNV GL started a Joint Industry Project (JIP) called “ACE -Alleviating Cyclone and Earthquake challenges for wind farms”. Based on the project results, a Recommended Practice (RP) for seismic design of wind turbines and their support structures will be developed. It will supplement existing standards like DNVGL-ST-0126, DNVGL-ST-0437 and the IEC 61400 series. This paper addresses the area of seismic load calculation and the details of combining earthquake impact with other environmental loads. Different options of analysis, particularly time-domain simulations with integrated models or submodelling techniques using superelements will be presented. Seismic ground motions using a uniform profile or depth-varying input profile are discussed. Finally, the seismic load design return period is addressed.


Author(s):  
Paul Sclavounos ◽  
Christopher Tracy ◽  
Sungho Lee

Wind is the fastest growing renewable energy source, increasing at an annual rate of 25% with a worldwide installed capacity of 74 GW in 2007. The vast majority of wind power is generated from onshore wind farms. Their growth is however limited by the lack of inexpensive land near major population centers and the visual pollution caused by large wind turbines. Wind energy generated from offshore wind farms is the next frontier. Large sea areas with stronger and steadier winds are available for wind farm development and 5MW wind turbine towers located 20 miles from the coastline are invisible. Current offshore wind turbines are supported by monopoles driven into the seafloor at coastal sites a few miles from shore and in water depths of 10–15m. The primary impediment to their growth is visual pollution and the prohibitive cost of seafloor mounted monopoles in larger water depths. This paper presents a fully coupled dynamic analysis of floating wind turbines that enables a parametric design study of floating wind turbine concepts and mooring systems. Pareto optimal designs are presented that possess a favorable combination of nacelle acceleration, mooring system tension and displacement of the floating structure supporting a five megawatt wind turbine. All concepts are selected so that they float stably while in tow to the offshore wind farm site and prior to their connection to the mooring system. A fully coupled dynamic analysis is carried out of the wind turbine, floater and mooring system in wind and a sea state based on standard computer programs used by the offshore and wind industries. The results of the parametric study are designs that show Pareto fronts for mean square acceleration of the turbine versus key cost drivers for the offshore structure that include the weight of the floating structure and the static plus dynamic mooring line tension. Pareto optimal structures are generally either a narrow deep drafted spar, or a shallow drafted barge ballasted with concrete. The mooring systems include both tension leg and catenary mooring systems. In some of the designs, the RMS acceleration of the wind turbine nacelle can be as low as 0.03 g in a sea state with a significant wave height of ten meters and water depths of up to 200 meters. These structures meet design requirements while possessing a favorable combination of nacelle accleration, total mooring system tension and weight of the floating structure. Their economic assessment is also discussed drawing upon a recent financial analysis of a proposed offshore wind farm.


Author(s):  
Christine A. Mecklenborg ◽  
Philipp Rouenhoff ◽  
Dongmei Chen

Offshore wind farms in deep water are becoming an attractive prospect for harnessing renewable energy and reducing dependence on fossil fuels. One area of major concern with offshore wind turbines is stability control. The same strong winds that give deep water turbines great potential for energy capture also pose a threat to stability, along with potentially strong wave forces. We examine development of state space controllers for active stabilization of a spar-buoy floating turbine. We investigate linear state feedback with a state observer and evaluate response time and disturbance rejection of decoupled SISO controllers.


Author(s):  
Simeng Li ◽  
J. Iwan D. Alexander

In this paper, a Genetic Algorithm is used to find optimized spatial configurations of wind turbines in offshore or flat terrain wind farms. The optimization is made by obtaining maximizing power output per unit cost. A wake model which permits the calculation of single wakes, multiple wakes and wake interactions is employed to estimate wind speeds at each turbine for a given external wind distribution function and a given spatial configuration. The optimization is applied to cases of unidirectional wind, variable direction winds and variable wind speed. The placement of a turbine can be set at any location following the approach of Mittal et al. Results are obtained for different spacing limits between turbines and wind farms of different sizes. The results for some patterns of optimized placements of wind turbines are discussed in the context of the wind distributions and the wake model employed.


Sign in / Sign up

Export Citation Format

Share Document