scholarly journals Synthesis and Characterization of Mechanically Alloyed, Nanostructured Cubic MoW Carbide

2020 ◽  
Vol 10 (24) ◽  
pp. 9114
Author(s):  
Martin Martinez Ruiz ◽  
Jesús Noé Rivera Olvera ◽  
Rodolfo Morales Davila ◽  
Leonardo González Reyes ◽  
Vicente Garibay Febles ◽  
...  

Carbides are used extensively as cutting tools, forming dies, and recently in catalysis applications, among other industrial applications. In this work, the synthesis and characterization of a nanostructured MoW bimetallic carbide were carried out by mechanical alloying with a mixture of elemental powders with a nominal composition of W1.5Mo6C2.5 at different grinding times as follows: 25, 50, and 75 h in a low-energy ball mill at a speed of 500 rpm and 125 and 150 h in a high-energy ball mill at a speed of 1500 rpm. The formation of a solid solution was observed at 150 h of milling; the nanostructured bcc MoW carbide corresponded to the main phase in the sample, besides the presence of the nanostructured MoW alloy as a secondary phase with an average crystal size of 40.8 nm. The phases and morphology at every stage of milling were studied by: X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and Vickers hardness. As the milling time increased, the hardness of these particles increased from 10.5 to 31.48 GPa for the powder particles milled for 150 h. The samples obtained at 125 and 150 h of milling were evaluated during catalytic aqua-thermolysis of heavy oil to analyze fuel desulfurization properties by Fourier transform infrared (FTIR) techniques. The results showed the breaking of S-S bonds, indicating the existence of a desulfurization reaction of heavy oil.

2011 ◽  
Vol 410 ◽  
pp. 224-227 ◽  
Author(s):  
Sivaiah Bathula ◽  
R.C. Anandani ◽  
Ajay Dhar ◽  
A.K. Srivastava

This study reports the synthesis and characterization of Al-alloy/SiCpmetal matrix nanocomposite, synthesized using high energy ball milling followed by sintering employing spark plasma sintering (SPS). In the present investigation, Al 5083 alloy powder (15 μm) and 10wt.% SiC particulates (~20 nm) were milled in a high-energy planetary ball mill to produce nanocrystalline Al-alloy/SiC nanocomposite powders. X-ray diffraction analysis (XRD) was carried out for milled and un-milled powder and it was observed that, as the time of milling increased, the crystallite size of Al-alloy matrix decreased sharply. The average crystallite size of Al-matrix from XRD analysis was observed to be ~ 25 nm after 15 h of ball milling. Ball milled nanocomposite powders were consolidated and sintered employing SPS at a temperature range of 500°C with a heating rate of 300°C/min and the total sintering cycle was completed in 8 min. The mechanical properties were found to substantially increase after sintering employing SPS. Morphology of as received (un-milled) powders, milled powders and sintered nanocomposites were investigated by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM). The mechanical property evaluation of the sintered nanocomposite was done by measuring nanoindentation, micro-hardness and compressive strength.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1225
Author(s):  
Cristina García-Garrido ◽  
Ranier Sepúlveda Sepúlveda Ferrer ◽  
Christopher Salvo ◽  
Lucía García-Domínguez ◽  
Luis Pérez-Pozo ◽  
...  

In this work, a blend of Ti, Nb, and Mn powders, with a nominal composition of 15 wt.% of Mn, and balanced Ti and Nb wt.%, was selected to be mechanically alloyed by the following two alternative high-energy milling devices: a vibratory 8000D mixer/mill® and a PM400 Retsch® planetary ball mill. Two ball-to-powder ratio (BPR) conditions (10:1 and 20:1) were applied, to study the evolution of the synthesized phases under each of the two mechanical alloying conditions. The main findings observed include the following: (1) the sequence conversion evolved from raw elements to a transitory bcc-TiNbMn alloy, and subsequently to an fcc-TiNb15Mn alloy, independent of the milling conditions; (2) the total full conversion to the fcc-TiNb15Mn alloy was only reached by the planetary mill at a minimum of 12 h of milling time, for either of the BPR employed; (3) the planetary mill produced a non-negligible Fe contamination from the milling media, when the highest BPR and milling time were applied; and (4) the final fcc-TiNb15Mn alloy synthesized presents a nanocrystalline nature and a partial degree of amorphization.


2010 ◽  
Author(s):  
M. S. Senthil Saravanan ◽  
K. Sivaprasad ◽  
S. P. Kumaresh Babu ◽  
P. Susila ◽  
B. S. Murty ◽  
...  

JOM ◽  
2015 ◽  
Vol 68 (1) ◽  
pp. 351-361 ◽  
Author(s):  
A. Chebli ◽  
A. Djekoun ◽  
N. Boudinar ◽  
M. Benabdeslem ◽  
B. Bouzabata ◽  
...  

2019 ◽  
Vol 969 ◽  
pp. 68-72
Author(s):  
K. Chandra Sekhar ◽  
Balasubramanian Ravisankar ◽  
S. Kumaran

An attempt was made to synthesis Al-5083alloy through high energy ball milling and densification through ECAP. The elemental powders consisting of Al5083 was milled for 5, 10 and 15 hrs using Retsch high energy ball mill (PM400). The physical and structural properties of mechanically alloyed particulates were characterised by diffraction methods and electron microscopy. The 15hrs nanocrystalline structured particulates of Al5083 alloy shows crystallite size of 15nm. Scanning Electron Microscope (SEM) reveals the morphology of alloy which is irregular shaped. The size of alloyed particulates also measured using SEM and found to be 7μm for 15hrs of milling. The 15hr milled alloy particulates were densified by ECAP through 90o die channel angle. Maximum densification of 92% and highest hardness of 63HRB was achieved for sample consolidated with route-A for two passes along with sintering.


2006 ◽  
Vol 113 (3-4) ◽  
pp. 235-239 ◽  
Author(s):  
A. Djekoun ◽  
A. Otmani ◽  
B. Bouzabata ◽  
L. Bechiri ◽  
N. Randrianantoandro ◽  
...  

2005 ◽  
Vol 2 (3) ◽  
pp. 171-178 ◽  
Author(s):  
Pallavi Pharkya ◽  
Akram Alfantazi ◽  
Zoheir Farhat

This work discusses the fabrication and characterization of Pt-Co electrocatalysts for polymer electrolyte membrane fuel cells (PEMFC) and electrocatalysis of the oxygen reduction reaction. Two sets of carbon supported catalysts with Pt:Co in the atomic ratio of 0.25:0.75 and 0.75:0.25 were prepared using a high-energy ball-milling technique. One of the Pt-Co electrocatalysts was subjected to lixiviation to examine the change in surface area. Microstructural characterization of the electrocatalysts was done using scanning electron microscopy, transmission electron microscopy, x-ray diffractometry, and x-ray photoelectron spectroscopy. Electrochemical characterization of the electrocatalysts was done in acidic and alkaline media using cyclic voltammetry and potentiodynamic polarization techniques. These tests were performed at room and higher temperature (50°C). Performances of the electrocatalysts were also compared with the commercial E-TEK Pt:Co alloy electrocatalysts of the compositions 10% Pt-Co alloy (1:1 a/o) and 40% Pt-Co alloy (1:1 a/o) on Vulcan XC-72.


2004 ◽  
Vol 379 (1-2) ◽  
pp. 266-271 ◽  
Author(s):  
Yanping Shen ◽  
Huey Hoon Hng ◽  
Joo Tien Oh

2018 ◽  
Vol 58 (3) ◽  
Author(s):  
Kęstutis Mažeika ◽  
Violeta Bėčytė ◽  
Yulia O. Tykhonenko-Polishchuk ◽  
Mykola M. Kulyk ◽  
Oleksandr V. Yelenich ◽  
...  

CoFe2O4/polypyrrole composite nanoparticles were synthesized using a high energy ball mill. Mössbauer and Fourier transform infrared spectroscopies, magnetization measurements and transmission electron microscopy were used for the characterization of samples. Specific loss power (SLP) was determined by exposing nanoparticles to an alternating magnetic field. Some changes in coercivity were observed and explained comparing CoFe2O4 nanoparticles withCoFe2O4/polypyrrole composite nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document