scholarly journals In-Plane Heatwave Thermography as Digital Inspection Technique for Fasteners in Aircraft Fuselage Panels

2020 ◽  
Vol 11 (1) ◽  
pp. 132
Author(s):  
Michael Stamm ◽  
Peter Krüger ◽  
Helge Pfeiffer ◽  
Bernd Köhler ◽  
Johan Reynaert ◽  
...  

The inspection of fasteners in aluminium joints in the aviation industry is a time consuming and costly but mandatory task. Until today, the manual procedure with the bare eye does not allow the temporal tracking of a damaging behavior or the objective comparison between different inspections. A digital inspection method addresses both aspects while resulting in a significant inspection time reduction. The purpose of this work is to develop a digital and automated inspection method based on In-plane Heatwave Thermography and the analysis of the disturbances due to thermal irregularities in the plate-like structure. For this, a comparison study with Ultrasound Lock-in Thermography and Scanning Laser Doppler Vibrometry as well as a benchmarking of all three methods on one serviceable aircraft fuselage panel is performed. The presented data confirm the feasibility to detect and to qualify countersunk rivets and screws in aluminium aircraft fuselage panels with the discussed methods. The results suggest a fully automated inspection procedure which combines the different approaches and a study with more samples to establish thresholds indicating intact and damaged fasteners.

2020 ◽  
Vol 39 (3) ◽  
Author(s):  
A. Annessi ◽  
P. Castellini ◽  
E. O. Radaelli ◽  
L. Jurina ◽  
M. Martarelli

Author(s):  
Weihe Guan ◽  
Changzhou Yan ◽  
Yuanhong Tao ◽  
Xuedong Chen

High temperature UT inspection techniques can be used to conduct random inspection on line on the key locations of pressure vessels and pipelines in operation so as to find out fresh defects in time and determine inspection time. It can also be used for real-time monitoring and control of defect-containing pressure vessels and pipelines and provide a basis for safety assessment of equipment so as to ensure safe operation of pressure vessels and pipelines. The propagation velocity of ultrasonic wave in metallic pressure-bearing equipment and its amplitude vary with temperature, therefore, the factors that influence UT inspection ability and measuring accuracy will be increased. In this paper the variation in sound velocity and attenuation law of ultrasonic shear wave in common pressure vessels and pipelines in the range of room temperature ∼ 450 °C is studied, the sound velocity decreases linearly as temperature rises and the attenuation coefficient α decreases as temperature rises, from 0.006 dB/mm at room temperature to 0.08dB/mm at 450 °C. The factors that influence inspection accuracy of ultrasonic shear wave are discussed, including variation in sound velocity, loss in interface sound pressure, thermal expansion, and so forth. The method for detection of weld defects within above temperature range using the ultrasonic shear wave is established, including scanning manner, measurement of defect height and length and their position correction, and so forth. The present situation of online high-temperature UT inspection technology for pressure vessels and pipelines in China is summarized through online UT inspection examples of petrochemical equipment under local high-temperature environment.


Sign in / Sign up

Export Citation Format

Share Document