scholarly journals Marginal and Internal Fit of Ceramic Prostheses Fabricated from Different Chairside CAD/CAM Systems: An In Vitro Study

2021 ◽  
Vol 11 (2) ◽  
pp. 857
Author(s):  
Keunbada Son ◽  
Kyu-Bok Lee

The purpose of this in vitro study was to evaluate marginal and internal fits of ceramic crowns fabricated with chairside computer-aided design and manufacturing (CAD/CAM) systems. An experimental model based on ISO 12836:2015 was digitally scanned with different intraoral scanners (Omnicam (CEREC), EZIS PO (DDS), and CS3500 (Carestream)). Ceramic crowns were fabricated using the CAD/CAM process recommended by each system (CEREC, EZIS, and Carestream systems; N = 15). The 3-dimensional (3D) marginal and internal fit of each ceramic crown was measured using a 3D inspection software (Geomagic control X). Differences among the systems and various measurements were evaluated using the Kruskal–Wallis test. Statistically significant differences were validated using pairwise comparisons (α = 0.05). Occlusal gaps in the CEREC, EZIS, and Carestream groups were 113.0, 161.3, and 438.2 µm, respectively (p < 0.001). The axial gaps were 83.4, 78.0, and 107.9 µm, respectively. The marginal gaps were 77.8, 99.3, and 60.6 µm, respectively, and the whole gaps were 85.9, 107.3, and 214.0 µm, respectively. Significant differences were observed with the EZIS system compared with the other two systems in terms of the marginal gap sizes. The CEREC system showed no significant differences among the four measured regions. However, the EZIS and Carestream systems did show a statistically significant difference (p < 0.05). All three systems were judged to be capable of fabricating clinically acceptable prostheses, because the marginal gap, which is the most important factor in the marginal fit of prostheses, was recorded to be below 100 µm in all three systems.

2005 ◽  
Vol 24 (3) ◽  
pp. 456-459 ◽  
Author(s):  
Takashi NAKAMURA ◽  
Hideaki TANAKA ◽  
Soichiro KINUTA ◽  
Takeshi AKAO ◽  
Kei OKAMOTO ◽  
...  

Author(s):  
Francesco Ferrini ◽  
Gianpaolo Sannino ◽  
Carlo Chiola ◽  
Paolo Capparé ◽  
Giorgio Gastaldi ◽  
...  

The aim of this in vitro study was to compare the quality of digital workflows generated by different scanners (Intra-oral digital scanners (I.O.S.s)) focusing on marginal fit analysis. A customized chrome-cobalt (Cr-Co) implant abutment simulating a maxillary right first molar was fixed in hemi-maxillary stone model and scanned by eight different I.O.S.s: Omnicam® (Denstply Sirona, Verona, Italy) CS3500®, CS3600®, (Carestream Dental, Atlanta, GA, USA), True Definition Scanner® (3M, St. Paul, MN, USA), DWIO® (Dental Wings, Montreal, Quebec, Canada), PlanScan® (Planmeca Oy, Helsinki, Finland), 3D PROGRESS Plus® (MHT, Verona, Italy), TRIOS 3® (3Shape, Copenhagen, Denmark). Nine scans were performed by each tested I.O.S. and 72 copings were designed using a dental computer-assisted-design/computer-assisted-manufacturing (CAD/CAM) software (exocad GmbH, Darmstadt, Germany). According to CAD data, zirconium dioxide (ZrO2) copings were digitally milled (Roland DWX-50, Irvine, CA, USA). Scanning electron microscope (SEM) direct vision allowed for marginal gap measurements in eight points for each specimen. Descriptive analysis was performed using mean, standard deviation, and median, while the Kruskal–Wallis test was performed to determine whether the marginal discrepancies were significantly different between each group (significance level p < 0.05). The overall mean marginal gap value and standard deviation were 53.45 ± 30.52 μm. The minimum mean value (40.04 ± 18.90 μm) was recorded by PlanScan®, then 3D PROGRESS Plus® (40.20 ± 21.91 μm), True Definition Scanner® (40.82 ± 26.19 μm), CS3500® (54.82 ± 28.86 μm) CS3600® (59,67 ± 28.72 μm), Omnicam® (61.57 ± 38.59 μm), DWIO® (62.49 ± 31.54 μm), while the maximum mean value (67.95 ± 30.41 μm) was recorded by TRIOS 3®. The Kruskal–Wallis tests revealed a statistically significant difference (p-value < 0.5) in the mean marginal gaps between copings produced by 3D PROGRESS Plus®, PlanScan, True Definition Scanner, and the other evaluated I.O.S.s. The use of an I.O.S. for digital impressions may be a viable alternative to analog techniques. Although in this in vitro study PlanScan®, 3D PROGRESS Plus® and True Definition Scanner® may have showed the best performances, all I.O.S.s tested could provide clinically encouraging results especially in terms of marginal accuracy, since mean marginal gap values were all within the clinically acceptable threshold of 120 μm.


2021 ◽  
Vol 11 (10) ◽  
pp. 4534
Author(s):  
Gil Ben-Izhack ◽  
Asaf Shely ◽  
Omer Koton ◽  
Avi Meirowitz ◽  
Shifra Levartovsky ◽  
...  

Background: This study compared the marginal gap (MG) and absolute marginal discrepancy (AMD) of computer-aided design and computer-aided manufacturing (CAD–CAM) used in open systems (OSs) and closed systems (CSs) for producing monolithic zirconia-reinforced lithium silicate (ZLS) ceramic crowns. Methods: 60 ZLS ceramic crowns were cemented to abutment acrylic teeth; thirty crowns were designed and milled by an OS, and thirty by a CS. All crowns were sectioned for evaluating the marginal gap by scanning electronic microscopy (SEM). To compare the marginal gap between CS and OS techniques, data were analyzed using the independent-samples Mann–Whitney U Test (α = 0.05). Results: AMD was found to be significantly better for the closed system (p < 0.05). Mean AMD values for the CS were 148 µm, and for the OS it was 196 µm. MG was found to be significantly better for the OS (p < 0.05). Mean MG values for the CS were 55 µm, and for the OS they were 38 µm. Conclusions: The marginal gap in relation to AMD was significantly better for CS. However, the marginal gap in relation to MG was significantly better for OS. Both techniques showed clinically acceptable MG values (<120 µm).


2020 ◽  
Vol 75 (6) ◽  
pp. 303-310
Author(s):  
George P Babiolakis ◽  
C Peter Owen

INTRODUCTION: No studies on the marginal gap or internal fit of crowns have reported the effect of non-axial seating which may often occur inadvertently clinically. AIM: Therefore this in vitro study sought to investigate the off-axis seating of CAD/CAM crowns and its effect on the marginal gap and internal fit. METHOD: A standardised crown preparation on a typodont tooth was used to design and mill 30 crowns with a flat occlusal surface. Ten Zirconia (Dentsply Sirona, Germany), 10 Enamic (Vita, Austria), and 10 Brilliant Crios (Coltene, Switzerland) crowns were milled, Ave of each milled with a luting space of 100µm, and Ave of 200µm. The marginal gap was measured in two and three dimensions after luting with silicone on a 3D-printed metal replica. Seating occurred axially, at 5° buccally and 5° lingually. The silicone was used to calculate the internal fit RESULTS: Axial seating with a 100 µm luting space obtained the smallest marginal gap, irrespective of material or luting space. 3D measurements were larger than 2D measurements, but not significantly. The maximum off-axis gap was 117µm, on the opposite side to which pressure was applied. CONCLUSIONS: Care must be taken clinically to ensure that luting takes place in an axial direction only.


2017 ◽  
Vol 61 (2) ◽  
pp. 177-184 ◽  
Author(s):  
Bálint Vecsei ◽  
Gellért Joós-Kovács ◽  
Judit Borbély ◽  
Péter Hermann

Sign in / Sign up

Export Citation Format

Share Document