scholarly journals The effect of off-axis seating on the marginal adaptation of full coverage all ceramic crowns

2020 ◽  
Vol 75 (6) ◽  
pp. 303-310
Author(s):  
George P Babiolakis ◽  
C Peter Owen

INTRODUCTION: No studies on the marginal gap or internal fit of crowns have reported the effect of non-axial seating which may often occur inadvertently clinically. AIM: Therefore this in vitro study sought to investigate the off-axis seating of CAD/CAM crowns and its effect on the marginal gap and internal fit. METHOD: A standardised crown preparation on a typodont tooth was used to design and mill 30 crowns with a flat occlusal surface. Ten Zirconia (Dentsply Sirona, Germany), 10 Enamic (Vita, Austria), and 10 Brilliant Crios (Coltene, Switzerland) crowns were milled, Ave of each milled with a luting space of 100µm, and Ave of 200µm. The marginal gap was measured in two and three dimensions after luting with silicone on a 3D-printed metal replica. Seating occurred axially, at 5° buccally and 5° lingually. The silicone was used to calculate the internal fit RESULTS: Axial seating with a 100 µm luting space obtained the smallest marginal gap, irrespective of material or luting space. 3D measurements were larger than 2D measurements, but not significantly. The maximum off-axis gap was 117µm, on the opposite side to which pressure was applied. CONCLUSIONS: Care must be taken clinically to ensure that luting takes place in an axial direction only.

2021 ◽  
Vol 11 (2) ◽  
pp. 857
Author(s):  
Keunbada Son ◽  
Kyu-Bok Lee

The purpose of this in vitro study was to evaluate marginal and internal fits of ceramic crowns fabricated with chairside computer-aided design and manufacturing (CAD/CAM) systems. An experimental model based on ISO 12836:2015 was digitally scanned with different intraoral scanners (Omnicam (CEREC), EZIS PO (DDS), and CS3500 (Carestream)). Ceramic crowns were fabricated using the CAD/CAM process recommended by each system (CEREC, EZIS, and Carestream systems; N = 15). The 3-dimensional (3D) marginal and internal fit of each ceramic crown was measured using a 3D inspection software (Geomagic control X). Differences among the systems and various measurements were evaluated using the Kruskal–Wallis test. Statistically significant differences were validated using pairwise comparisons (α = 0.05). Occlusal gaps in the CEREC, EZIS, and Carestream groups were 113.0, 161.3, and 438.2 µm, respectively (p < 0.001). The axial gaps were 83.4, 78.0, and 107.9 µm, respectively. The marginal gaps were 77.8, 99.3, and 60.6 µm, respectively, and the whole gaps were 85.9, 107.3, and 214.0 µm, respectively. Significant differences were observed with the EZIS system compared with the other two systems in terms of the marginal gap sizes. The CEREC system showed no significant differences among the four measured regions. However, the EZIS and Carestream systems did show a statistically significant difference (p < 0.05). All three systems were judged to be capable of fabricating clinically acceptable prostheses, because the marginal gap, which is the most important factor in the marginal fit of prostheses, was recorded to be below 100 µm in all three systems.


2005 ◽  
Vol 24 (3) ◽  
pp. 456-459 ◽  
Author(s):  
Takashi NAKAMURA ◽  
Hideaki TANAKA ◽  
Soichiro KINUTA ◽  
Takeshi AKAO ◽  
Kei OKAMOTO ◽  
...  

2020 ◽  
Vol 71 (1) ◽  
pp. 405-410
Author(s):  
Kamel Earar ◽  
Alexandru Andrei Iliescu ◽  
Gabriela Popa ◽  
Andrei Iliescu ◽  
Ioana Rudnic ◽  
...  

CAD/CAM procedures are increasingly used to the manufacturing of 3D-designed PMMA interim dental crowns. The aim of this in vitro study was to compare the internal fit of interim PMMA crowns fabricated by subtractive versus additive CAD/CAM procedures. Starting from a Co-Cr CAD/CAM master abutment model, 20 standardized dental models of dental stone were done by double impression technique. Subsequently two groups of interim PMMA interim crowns, each of them having 10 specimens, were CAM obtained either by milling or 3D printing, using Exocad software package, milling machine Rolland DWX-50, and the 3D printer MoonRay S 100 respectively. An electronic digital caliper Powerfix Profi+ was used for measurements of the chrome cobalt abutment and crowns inner diameter in 4 directions (mesial-distal gingival, buccal-lingual gingival, mesial-distal occlusal, and buccal-lingual occlusal). The null hypothesis that the internal dimensional accuracy of interim PMMA crowns fabricated by DLP additive method would not be different compared to those obtained by milling procedure was rejected since the printed PMMA interim crowns were more accurate. This study concluded that the milled PMMA interim crowns show larger internal dimensional variations than the 3D printed ones. However, the fit variation among interim crowns fabricated by both procedures was statistically non significant, so that both CAM technologies may be equally used in manufacturing process.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1236
Author(s):  
Jung-Hwa Lim ◽  
Enkhjargal Bayarsaikhan ◽  
Seung-Ho Shin ◽  
Na-Eun Nam ◽  
June-Sung Shim ◽  
...  

This study evaluated the internal fit and the accuracy of the implant placement position in order to determine how the surface shape of the tooth and the offset influence the accuracy of the surgical guide. The acquired digital data were analyzed in three dimensions using 3D inspection software. The obtained results confirmed that the internal fit was better in the groove sealing (GS) group (164.45 ± 28.34 μm) than the original shape (OS) group (204.07 ± 44.60 μm) (p < 0.001), and for an offset of 100 μm (157.50 ± 17.26 μm) than for offsets of 30 μm (206.48 ± 39.12 μm) and 60 μm (188.82 ± 48.77 μm) (p < 0.001). The accuracy of implant placement was better in the GS than OS group in terms of the entry (OS, 0.229 ± 0.092 mm; GS, 0.169 ± 0.061 mm; p < 0.001), apex (OS, 0.324 ± 0.149 mm; GS, 0.230 ± 0.124 mm; p < 0.001), and depth (OS, 0.041 ± 0.027 mm; GS, 0.025 ± 0.022 mm; p < 0.001). In addition, the entries (30 μm, 0.215 ± 0.044 mm; 60 μm, 0.172 ± 0.049 mm; 100 μm, 0.119 ± 0.050 mm; p < 0.001) were only affected by the amount of offset. These findings indicate that the accuracy of a surgical guide can be improved by directly sealing the groove of the tooth before manufacturing the surgical guide or setting the offset during the design process.


2019 ◽  
Vol 56 (2) ◽  
pp. 409-412 ◽  
Author(s):  
Marina Melescanu-Imre ◽  
Mihaela Pantea ◽  
Alexandra Totan ◽  
Ana Maria Cristina Tancu ◽  
Maria Greabu ◽  
...  

The CAD/CAM technology has been successfully integrated in clinical and laboratory aspects of dental medicine. The present in vitro study focuses on the biochemical interactions between saliva and three types of polymeric resins for occlusal splints. Dental material samples were produced from 3D printed, milled and self-cured resins and were incubated with saliva samples from 20 healthy volunteers. The results showed that the 3D printed and milled polymeric resins did not produce any significant changes in oxidative stress parameters (uric acid, TAC, GGT, OXSR-1) or inflammatory markers (IL-2, IL-6). On the other hand, the self-cured acrylic resin produced a significant decrease in the salivary TAC and uric acid, the most important antioxidants in saliva, affecting the capacity of saliva to protect the oral environment against oxidative stress.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4239
Author(s):  
Roxana-Diana Vasiliu ◽  
Sorin Daniel Porojan ◽  
Liliana Porojan

The accuracy of newly developed ceramic materials is still being studied. Marginal and internal adaptation are known factors that have an essential impact on the long term success of dental restorations. The aim of this in vitro study was to evaluate the marginal and internal fit of heat-pressed and milled monolithic glass-ceramic restorations based on their ceramic type, processing technique, and in vitro thermocycling. Thirty-two crowns were studied and divided into four groups (n = 8), according to the ceramic material (feldspathic glass-ceramic (F) and zirconia reinforced lithium silicate glass-ceramic (ZLS)) and to their technological obtaining processes (milling (M) and heat-pressing (P)). A typodont preparation was scanned with a D2000 3D scanner to obtain identical 32 resin 3D-printed abutment teeth. Marginal and internal gaps were measured using the silicone replica technique under 40× magnification. The crowns were further cemented and thermally aged for 10,000 cycles After cementation and thermocycling of the samples, marginal and internal gaps were assessed using micro-CT (micro-computed tomography)) analysis. Data were statistically analyzed using statistical tests. Significant differences were found before and after cementation and thermocycling among the tested materials (p < 0.05). Related to technological processing, significant differences were seen in the marginal area between FP and FM (p < 0.05) Significant differences were also found in the axial and occlusal areas between the ZLSP and ZLSM. Thermocycling and cementation did not have a significant effect on the tested materials (p < 0.05). The technological processes influenced the marginal and internal fit of the crowns in favor of the CAD/CAM (computer aided design/computer aided manufacturing)technologies. Thermal aging had little effect on marginal adaptability; it increased the values for all the tested samples in a small way, but the values remained in their clinically acceptable range for all of the crowns.


Sign in / Sign up

Export Citation Format

Share Document