scholarly journals Quarter Wavelength Fabry–Perot Cavity Antenna with Wideband Low Monostatic Radar Cross Section and Off-Broadside Peak Radiation

2021 ◽  
Vol 11 (3) ◽  
pp. 1053
Author(s):  
Hassan Umair ◽  
Tarik Bin Abdul Latef ◽  
Yoshihide Yamada ◽  
Tayyab Hassan ◽  
Wan Nor Liza Binti Wan Mahadi ◽  
...  

Since antennas are strong radar targets, their radar cross section (RCS) reduction and radiation enhancement is of utmost necessity, particularly for stealth platforms. This work proposes the design of a Fabry–Perot Cavity (FPC) antenna which has wideband low monostatic RCS. While in the transmission mode, not only is gain enhancement achieved, but radiation beam is also deflected in the elevation plane. Moreover, the design is low-profile, i.e., the cavity height is ~λ/4. A patch antenna designed at 6 GHz serves as the excitation source of the cavity constructed between the metallic ground plane and superstrate. The superstrate structure is formed with absorptive frequency selective surface (AFSS) in conjunction with dual-sided partially reflective surface (PRS). Resistor loaded metallic rings serve as the AFSS, while PRS is constructed from inductive gradated mesh structure on one side to realize phase gradient for beam deflection; the other side has fixed capacitive elements. Results show that wideband RCS reduction was achieved from 4–16 GHz, with average RCS reduction of about 8.5 dB over the reference patch antenna. Off-broadside peak radiation at −38° was achieved, with gain approaching ~9.4 dB. Simulation and measurement results are presented.

2018 ◽  
Vol 7 (2) ◽  
pp. 76-82 ◽  
Author(s):  
V. A. Libi Mol ◽  
C. K. Aanandan

This paper presents a novel low profile, high gain Fabry-Perot resonator antenna with reduced radar cross section (RCS). An artificial magnetic conductor which provides zero degree reflection phase at resonant frequency is used as the ground plane of the antenna to obtain the low profile behavior. A checker board structure consisting of two artificial magnetic conductor (AMC) surfaces with antiphase reflection property is used as the superstrate to reduce the RCS. The bottom surface of superstrate is perforated to act as partially reflective surface to enhance the directivity of antenna. The antenna has a 3 dB gain bandwidth from 9.32 GHz to 9.77 GHz with a peak gain of 12.95 dBi at 9.6 GHz. The cavity antenna also has reduced reflectivity with a maximum reduction of 14.5 dB at 9.63 GHz.


2018 ◽  
Vol 10 (9) ◽  
pp. 1042-1047 ◽  
Author(s):  
Jiakai Zhang ◽  
Haixiong Li ◽  
Qi Zheng ◽  
Jun Ding ◽  
Chenjiang Guo

AbstractIn this study, a new microstrip patch antenna with wideband radar cross-section (RCS) reduction is presented. The RCS of the proposed antenna was reduced by subtracting the current-direction slots of the patch, with the radiation performance sustained not only for the current-direction subtraction, but also for the no modification in the ground plane. Modified and reference antenna were fabricated and measured. The simulation and measurement results showed that the modified antenna reduced the in-band and out-band RCS simultaneously with no detriment to the radiation performance. In the frequency band from 3.9 to 8.1 GHz, the RCS of the modified antenna was reduced in the whole band compared with the RCS of the reference antenna. The maximum RCS reduction was 7 dB at a frequency of 6.7 GHz.


2021 ◽  
Author(s):  
Khushboo Singh ◽  
Muhammad U. Afzal ◽  
Ali Lalbakhsh ◽  
Karu P. Esselle

2014 ◽  
Vol 15 (4) ◽  
pp. 895-910 ◽  
Author(s):  
Gang Bao ◽  
Jun Lai

AbstractThis paper investigates the reduction of backscatter radar cross section (RCS) for a rectangular cavity embedded in the ground plane. The bottom of the cavity is coated by a thin, multilayered radar absorbing material (RAM) with possibly different permittivities. The objective is to minimize the backscatter RCS by the incidence of a plane wave over a single or a set of incident angles. By formulating the scattering problem as a Helmholtz equation with artificial boundary condition, the gradient with respect to the material permittivities is determined efficiently by the adjoint state method, which is integrated into a nonlinear optimization scheme. Numerical example shows the RCS may be significantly reduced.


2012 ◽  
Vol 6 (6) ◽  
pp. 670 ◽  
Author(s):  
Y. Shang ◽  
S. Xiao ◽  
M.-C. Tang ◽  
Y.-Y. Bai ◽  
B. Wang

Sign in / Sign up

Export Citation Format

Share Document