scholarly journals A Multiple-Swarm Particle Swarm Optimisation Scheme for Tracing Packets Back to the Attack Sources of Botnet

2021 ◽  
Vol 11 (3) ◽  
pp. 1139
Author(s):  
Hsiao-Chung Lin ◽  
Ping Wang ◽  
Wen-Hui Lin ◽  
Yu-Hsiang Huang

Network intrusion detection systems that employ existing IP traceback (IPTBK) algorithms are generally unable to trace multiple attack sources. In these systems, the sampling mechanism only screens parts of the routing information, which leads to the tracing of the neighbour of the attack source and fails to identify the attack source. Theoretically, the multimodal optimisation problem cannot be solved for all of its multiple solutions using the traditional particle swarm optimisation (PSO) algorithm. The present study focuses on the use of multiple-swarm PSO (MSPSO) for recursively tracing attack paths back to a botnet’s multiple attack sources using the subgroup strategy. Specifically, the fitness of each path was calculated using a quasi-Newton gradient descent method to confirm the crucial path for successfully tracing the attack source. For multimodal optimisation problems, the MSPSO algorithm achieves an effective balance between individual particle exploitation and multiswarm exploration when premature convergence occurs. Thus, this algorithm accurately traces multiple attack sources. To verify the effectiveness of identifying Distributed Denial-Of-Service (DDoS) control centres, networks with various topology sizes (32–64 nodes) were simulated using ns-3 with the Boston University Representative Internet Topology Generator. The proposed A* search algorithm (minimal cost pathfinding algorithm) and MSPSO were used to identify the sources of simulated DDoS attacks. Compared with commonly available systems, the MSPSO algorithm performs better in multimodal optimisation problems, improves the accuracy of traceability analysis and reduces false responses for IPTBK problems.

Author(s):  
Loc Nguyen

Maximum likelihood estimation (MLE) is a popular method for parameter estimation in both applied probability and statistics but MLE cannot solve the problem of incomplete data or hidden data because it is impossible to maximize likelihood function from hidden data. Expectation maximum (EM) algorithm is a powerful mathematical tool for solving this problem if there is a relationship between hidden data and observed data. Such hinting relationship is specified by a mapping from hidden data to observed data or by a joint probability between hidden data and observed data. In other words, the relationship helps us know hidden data by surveying observed data. The essential ideology of EM is to maximize the expectation of likelihood function over observed data based on the hinting relationship instead of maximizing directly the likelihood function of hidden data. Pioneers in EM algorithm proved its convergence. As a result, EM algorithm produces parameter estimators as well as MLE does. This tutorial aims to provide explanations of EM algorithm in order to help researchers comprehend it. Moreover some improvements of EM algorithm are also proposed in the tutorial such as combination of EM and third-order convergence Newton-Raphson process, combination of EM and gradient descent method, and combination of EM and particle swarm optimization (PSO) algorithm.


Author(s):  
Lewis M. Pyke ◽  
Craig R. Stark

In recent years unmanned aerial vehicles (UAVs) have become smaller, cheaper, and more efficient, enabling the use of multiple autonomous drones where previously a single, human-operated drone would have been used. This likely includes crisis response and search and rescue missions. These systems will need a method of navigating unknown and dynamic environments. Typically, this would require an incremental heuristic search algorithm, however, these algorithms become increasingly computationally and memory intensive as the environment size increases. This paper used two different Swarm Intelligence (SI) algorithms: Particle Swarm Optimisation and Reynolds flocking to propose an overall system for controlling and navigating groups of autonomous drones through unknown and dynamic environments. This paper proposes Particle Swarm Optimisation Pathfinding (PSOP): a dynamic, cooperative algorithm; and, Drone Flock Control (DFC): a modular model for controlling systems of agents, in 3D environments, such that collisions are minimised. Using the Unity game engine, a real-time application, simulation environment, and data collection apparatus were developed and the performances of DFC-controlled drones—navigating with either the PSOP algorithm or a D* Lite implementation—were compared. The simulations do not consider UAV dynamics. The drones were tasked with navigating to a given target position in environments of varying size and quantitative data on pathfinding performance, computational and memory performance, and usability were collected. Using this data, the advantages of PSO-based pathfinding were demonstrated. PSOP was shown to be more memory efficient, more successful in the creation of high quality, accurate paths, more usable and as computationally efficient as a typical incremental heuristic search algorithm when used as part of a SI-based drone control model. This study demonstrated the capabilities of SI approaches as a means of controlling multi-agent UAV systems in a simple simulation environment. Future research may look to apply the DFC model, with the PSOP algorithm, to more advanced simulations which considered environment factors like atmospheric pressure and turbulence, or to real-world UAVs in a controlled environment.


Author(s):  
Chunli Zhu ◽  
Yuan Shen ◽  
Xiujun Lei

Traditional template matching-based motion estimation is a popular but time-consuming method for vibration vision measurement. In this study, the particle swarm optimization (PSO) algorithm is improved to solve this time-consumption problem. The convergence speed of the algorithm is increased using the adjacent frames search method in the particle swarm initialization process. A flag array is created to avoid repeated calculation in the termination strategy. The subpixel positioning accuracy is ensured by applying the surface fitting method. The robustness of the algorithm is ensured by applying the zero-mean normalized cross correlation. Simulation results demonstrate that the average extraction error of the improved PSO algorithm is less than 1%. Compared with the commonly used three-step search algorithm, diamond search algorithm, and local search algorithm, the improved PSO algorithm consumes the least number of search points. Moreover, tests on real-world image sequences show good estimation accuracy at very low computational cost. The improved PSO algorithm proposed in this study is fast, accurate, and robust, and is suitable for plane motion estimation in vision measurement.


2012 ◽  
Vol 233 ◽  
pp. 409-415
Author(s):  
Zhong Jian Tang ◽  
Miao Song

Aimed at the problem that it is difficult to measure production rate of hydrocyanic acid directly. So the soft measurement model of production rate of hydrocyanic acid can be established based on neural networks according to interrelated measurable engineering signals. Before being application to engineering, the soft measurement model is trained by PSO algorithm instead of the fast gradient descent method; Simulations prove that the soft measurement model trained by PSO possesses better measuring accuracy and stronger generalization ability. This kind of soft measurement model can be applied to practical production engineering of hydrocyanic acid.


Author(s):  
Loc Nguyen

Maximum likelihood estimation (MLE) is a popular method for parameter estimation in both applied probability and statistics but MLE cannot solve the problem of incomplete data or hidden data because it is impossible to maximize likelihood function from hidden data. Expectation maximum (EM) algorithm is a powerful mathematical tool for solving this problem if there is a relationship between hidden data and observed data. Such hinting relationship is specified by a mapping from hidden data to observed data or by a joint probability between hidden data and observed data. In other words, the relationship helps us know hidden data by surveying observed data. The essential ideology of EM is to maximize the expectation of likelihood function over observed data based on the hinting relationship instead of maximizing directly the likelihood function of hidden data. Pioneers in EM algorithm proved its convergence. As a result, EM algorithm produces parameter estimators as well as MLE does. This tutorial aims to provide explanations of EM algorithm in order to help researchers comprehend it. Moreover some improvements of EM algorithm are also proposed in the tutorial such as combination of EM and third-order convergence Newton-Raphson process, combination of EM and gradient descent method, and combination of EM and particle swarm optimization (PSO) algorithm.


2021 ◽  
Author(s):  
David

Particle swarm optimization (PSO) is a search algorithm based on stochastic and population-based adaptive optimization. In this paper, a pathfinding strategy is proposed to improve the efficiency of path planning for a broad range of applications. This study aims to investigate the effect of PSO parameters (numbers of particle, weight constant, particle constant, and global constant) on algorithm performance to give solution paths. Increasing the PSO parameters makes the swarm move faster to the target point but takes a long time to converge because of too many random movements, and vice versa. From a variety of simulations with different parameters, the PSO algorithm is proven to be able to provide a solution path in a space with obstacles.


Sign in / Sign up

Export Citation Format

Share Document