scholarly journals BIM for Existing Construction: A Different Logic Scheme and an Alternative Semantic to Enhance the Interoperabilty

2021 ◽  
Vol 11 (4) ◽  
pp. 1855
Author(s):  
Franco Guzzetti ◽  
Karen Lara Ngozi Anyabolu ◽  
Francesca Biolo ◽  
Lara D’Ambrosio

In the construction field, the Building Information Modeling (BIM) methodology is becoming increasingly predominant and the standardization of its use is now an essential operation. This method has become widespread in recent years, thanks to the advantages provided in the framework of project management and interoperability. Hoping for its complete dissemination, it is unthinkable to use it only for new construction interventions. Many are experiencing what happens with the so-called Heritage Building Information Modeling (HBIM); that is, how BIM interfaces with Architectural Heritage or simply with historical buildings. This article aims to deal with the principles and working methodologies behind BIM/HBIM and modeling. The aim is to outline the themes on which to base a new approach to the instrument. In this way, it can be adapted to the needs and characteristics of each type of building. Going into the detail of standards, the text also contains a first study regarding the classification of moldable elements. This proposal is based on current regulations and it can provide flexible, expandable, and unambiguous language. Therefore, the content of the article focuses on a revision of the thinking underlying the process, also providing a more practical track on communication and interoperability.

Heritage ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 2067-2089 ◽  
Author(s):  
Martina Attenni

BIM (Building Information Modeling) processes are the most effective way to know existing architectural structures, integrating the most advanced potentials of 3D modeling and the structured storage of heterogeneous information. Many HBIM (Heritage Building Information Modeling) applications lead to the systematization of survey data, even though a univocal working method is not yet clearly defined. This research considers the decomposition of architecture, based on structured criteria, and its reconstruction, through ideal models, as the main moments of the HBIM process. This hypothesis is verified through a procedure that links the survey 3D data with the characteristics of the ideal HBIM model, which allows a continuous comparison between the project model and as-built. The research provides for the setting up of a general methodology that, according to a growing approach to the complexity of the analyzed buildings, compares the process followed on two architectural structures. The study analyzes some important HBIM issues: The relationship between the semantic modeling and the surfaces’ continuity of architectural heritage; the relationship between the elements standardization, geometric irregularities, and material heterogeneity; the reliability of the built models; and the evaluation of the gap between an ideal model and the objective accuracy of surveying.


2021 ◽  
pp. 2141007
Author(s):  
Mengyi Lian ◽  
Xiaowei Liu

Building information modeling (BIM) is one of the most exciting recent construction, engineering, and architecture developments. Built environments play a significant role in Smart City worldwide, and they are used to convey useful information to achieve smart city strategic goals. In modern project management, optimizing resources, BIM data integration, and data sharing in a smart city environment is challenging. Hence, in this paper, IoT-based Improved Building Information modeling (IoT-IBIM) has been proposed to overcome the challenges in building information modeling in modern project management for sustainable smart city applications. This paper discusses the efforts to create and integrate built-in environment data with IoT sensors for effective communication. The Internet of Things provides efficient resource control, increased efficiency, and improved human quality of life. As a result, the Internet of Things is a critical enabler of smart societies, including smart homes, smart cities, and smart factories. Building Information Modeling is an advanced asset allocation framework that generates high-quality output, reduces resource use, reduces environmental effects of development, and secures resources and availability for future generations. The experimental results show that the proposed IoT-IBIM method enhances the performance ratio and improves data integration and data sharing in a smart city environment.


2014 ◽  
Vol 501-504 ◽  
pp. 2700-2705 ◽  
Author(s):  
Li Shen ◽  
Ya Xing Lin

The application of Building Information Modeling has become a trend in construction industry, it is our duty to accelerate BIM application in recent years. Firstly, the paper generally introduced the concepts and characteristics of BIM, and pointed out the problems that existed in Chinas Project Management of Construction Enterprises, and theoretically, technically discussed the solutions to these issues with BIM technology in a qualitative way. At last, the paper proposed some suggestions and outlooks for the development and promotion of BIM technology in China.


Author(s):  
M. Lo Brutto ◽  
E. Iuculano ◽  
P. Lo Giudice

Abstract. The preservation of historic buildings can often be particularly difficult due to the lack of detailed information about architectural features, construction details, etc.. However, in recent years considerable technological innovation in the field of Architecture, Engineering, and Construction (AEC) has been achieved by the Building Information Modeling (BIM) process. BIM was developed as a methodology used mainly for new construction but, given its considerable potential, this approach can also be successfully used for existing buildings, especially for buildings of historical and architectural value. In this case, it is more properly referred to as Historic – or Heritage – Building Information Modeling (HBIM). In the HBIM process, it is essential to precede the parametric modeling phase of the building with a detailed 3D survey that allows the acquisition of all geometric information. This methodology, called Scan-to-BIM, involves the use of 3D survey techniques for the production of point clouds as a geometric “database” for parametric modeling. The Scan-to-BIM approach can have several issues relating to the complexity of the survey. The work aims to apply the Scan-to-BIM approach to the survey and modeling of a historical and architectural valuable building to test a survey method, based on integrating different techniques (topography, photogrammetry and laser scanning), that improves the data acquisition phase. The “Real Cantina Borbonica” (Cellar of Royal House of Bourbon) in Partinico (Sicily, Italy) was chosen as a case study. The work has allowed achieving the HBIM of the “Real Cantina Borbonica” and testing an approach based exclusively on a topographic constraint to merge in the same reference system all the survey data (laser scanner and photogrammetric point clouds).


Author(s):  
Fabrizio Banfi ◽  
Daniela Oreni

The latest developments in the field of generative modeling and building information modeling for heritage building (HBIM) have allowed the authors to increase the level of transmissibility of information through the most modern techniques of virtual and augmented reality (VR-AR). This chapter summarises the last years of applied research in the field of three-dimensional modeling oriented to digitise and correctly represent the built heritage thanks to the integration of the most modern three-dimensional survey techniques with a scan-to-BIM process based on new grades of generation (GOG) and accuracy (GOA). The new paradigm of the complexity of the built heritage, its tangible and intangible values, have been shared through new immersive ways able to increase the information contents and the knowledge accumulated in the last years of one of the most representative and unique buildings of the Lombard architecture: the Cà Granda in Milan.


Author(s):  
Sara Giaveno

The chapter proposed aims at facing the various implications underlying the smart city concept based on digital twins. The structure of the text is articulated in three main themes: the use of the term “smart city” and the role that technologies had in its definition; the “3D city model” meaning and the integration procedures between BIM (building information modeling) and GIS (geographic information system); the classification of 3D city models by use cases. The chapter can provide researchers with a detailed dissertation aimed at clarifying both the theoretical and technical features belonging to smart city and its related innovative technologies.


Heritage ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 2457-2479 ◽  
Author(s):  
Spennemann ◽  
Poynter

Heritage Building Information Modeling (HBIM) focuses on the documentation and visualization of heritage properties which are confined in their permanent terrestrial space. This paper extended the concept of Heritage Building Information Modeling to the airspace above the sites. It presented a methodology for the 3D spatial visualisation of the aerial space controlled by anti-aircraft (AA) guns, taking into account the masking effects of the underlying terrain and the technological capabilities of the guns (rate of fire, projectile weight, etc.). The tool permits a nuanced analysis of the interplay between attacking aircraft and the siting of anti-aircraft guns and thus, allows for the analysis of the cultural landscape of World War II-era battle fields, which has to take into account the influence of aerial warfare. The applicability was illustrated by the case example of the Japanese WWII base on Kiska (Aleutian Islands).


Sign in / Sign up

Export Citation Format

Share Document