scholarly journals Category-Theoretic Formulation of the Model-Based Systems Architecting Cognitive-Computational Cycle

2021 ◽  
Vol 11 (4) ◽  
pp. 1945
Author(s):  
Yaniv Mordecai ◽  
James P. Fairbanks ◽  
Edward F. Crawley

We introduce the Concept→Model→Graph→View Cycle (CMGVC). The CMGVC facilitates coherent architecture analysis, reasoning, insight, and decision making based on conceptual models that are transformed into a generic, robust graph data structure (GDS). The GDS is then transformed into multiple views of the model, which inform stakeholders in various ways. This GDS-based approach decouples the view from the model and constitutes a powerful enhancement of model-based systems engineering (MBSE). The CMGVC applies the rigorous foundations of Category Theory, a mathematical framework of representations and transformations. We show that modeling languages are categories, drawing an analogy to programming languages. The CMGVC architecture is superior to direct transformations and language-coupled common representations. We demonstrate the CMGVC to transform a conceptual system architecture model built with the Object Process Modeling Language (OPM) into dual graphs and a stakeholder-informing matrix that stimulates system architecture insight.

Author(s):  
Yaniv Mordecai ◽  
James Fairbanks ◽  
Edward Crawley

We introduce the Concept-Model-Graph-View-Concept (CMGVC) transformation cycle. The CMGVC cycle facilitates coherent architecture analysis, reasoning, insight, and decision-making based on conceptual models that are transformed into a common, robust graph data structure (GDS). The GDS is then transformed into multiple views on the model, which inform stakeholders in various ways. This GDS-based approach decouples the view from the model and constitutes a powerful enhancement of model-based systems engineering (MBSE). CMGVC applies the rigorous foundations of Category Theory, a mathematical framework of representations and transformations. The CMGVC architecture is superior to direct transformations and language-coupled common representations. We demonstrate the CMGVC cycle to transform a conceptual system architecture model built with the Object Process Modeling Language (OPM) into dual graphs and a decision support matrix (DSM) that stimulates system architecture insight.


Author(s):  
Gabor Simko ◽  
Tihamer Levendovszky ◽  
Sandeep Neema ◽  
Ethan Jackson ◽  
Ted Bapty ◽  
...  

One of the primary goals of the Adaptive Vehicle Make (AVM) program of DARPA is the construction of a model-based design flow and tool chain, META, that will provide significant productivity increase in the development of complex cyber-physical systems. In model-based design, modeling languages and their underlying semantics play fundamental role in achieving compositionality. A significant challenge in the META design flow is the heterogeneity of the design space. This challenge is compounded by the need for rapidly evolving the design flow and the suite of modeling languages supporting it. Heterogeneity of models and modeling languages is addressed by the development of a model integration language – CyPhy – supporting constructs needed for modeling the interactions among different modeling domains. CyPhy targets simplicity: only those abstractions are imported from the individual modeling domains to CyPhy that are required for expressing relationships across sub-domains. This “semantic interface” between CyPhy and the modeling domains is formally defined, evolved as needed and verified for essential properties (such as well-formedness and invariance). Due to the need for rapid evolvability, defining semantics for CyPhy is not a “one-shot” activity; updates, revisions and extensions are ongoing and their correctness has significant implications on the overall consistency of the META tool chain. The focus of this paper is the methods and tools used for this purpose: the META Semantic Backplane. The Semantic Backplane is based on a mathematical framework provided by term algebra and logics, incorporates a tool suite for specifying, validating and using formal structural and behavioral semantics of modeling languages, and includes a library of metamodels and specifications of model transformations.


Author(s):  
Mara Nikolaidou ◽  
Nancy Alexopoulou

System design is an important phase of system engineering, determining system architecture to satisfy specific requirements. System design focuses on analyzing performance requirements, system modeling and prototyping, defining and optimizing system architecture, and studying system design tradeoffs and risks. Modern enterprise information systems (EIS) are distributed systems usually built on multitiered client server architectures, which can be modeled using well-known frameworks, such as Zachman enterprise architecture or open distributed processing reference model (RM-ODP). Both frameworks identify different system models, named views, corresponding to discrete stakeholder’s perspectives, specific viewpoints, and could serve as a basis for model-based system design. The main focus of this chapter is to explore the potential of model-based design for enterprise information systems (EIS). To this end, the basic requirements for model-based EIS design are identified, while three alternative approaches are discussed based on the above requirements, namely, rational unified process for systems engineering (RUP SE), UML4ODP and EIS design framework.


Systems ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 21
Author(s):  
Christoph Binder ◽  
Christian Neureiter ◽  
Arndt Lüder

Contemporary manufacturing systems are undergoing a major change promoted by emerging technologies such as Cyber-physical Systems (CPS) or the Internet of Things (IoT). This trend, nowadays widely known by the term “Industry 4.0”, leads to a new kind of automated production. However, the rising number of dynamically interconnected elements in industrial production lines results in such a system being transformed into a complex System of Systems (SoS). Due to the increasing complexity and the challenges accompanied by this change, conventional engineering methods using generic principles reach their limits when developing this type of systems. With varying approaches only trying to find a solution for small-scaled areas of this problem statement, the need for a holistic methodology becomes more and more obvious. Having recognized this issue, one of the most promising approaches has been introduced with the Reference Architecture Model Industry 4.0 (RAMI 4.0). However, in the current point of view, this domain-specific architecture framework is missing specifications to address all aspects of such a critical infrastructure. Thus, this paper introduces a comprehensive modeling approach utilizing methods applied in Model-Based Systems Engineering (MBSE) and including domain-specific particularities as well as architectural concepts with the goal to enable mutual engineering of current and future industrial systems. The resulting artifacts, a domain-specific language (DSL), an architecture definition and a development process, are thereby consolidated in a ready to use software framework, whose applicability was evaluated by a real-world case study.


Systems ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 19 ◽  
Author(s):  
Alejandro Salado ◽  
Paul Wach

Some authors suggest that transitioning requirements engineering from the traditional statements in natural language with shall clauses to model-based requirements within a Model-Based Systems Engineering (MBSE) environment could improve communication, requirements traceability, and system decomposition, among others. Requirement elements in the Systems Modeling Language (SysML) fail to fulfill this objective, as they are really a textual requirement in natural language as a model element. Current efforts to directly leverage behavioral and structural models of the system lack an overarching theoretical framework with which to assess the adequacy of how those models are used to capture requirements. This paper presents an approach to construct true model-based requirements in SysML. The presented approach leverages some of SysML’s behavioral and structural models and diagrams, with specific construction rules derived from Wymore’s mathematical framework for MBSE and taxonomies of requirements and interfaces. The central proposition of the approach is that every requirement can be modeled as an input/output transformation. Examples are used to show how attributes traditionally thought of as non-functional requirements can be captured, with higher precision, as functional transformations.


Author(s):  
Yun Ye ◽  
Marija Jankovic ◽  
Jean-Claude Bocquet

Model-Based Systems Engineering (MBSE) currently lacks a formalized way of managing modeling consistency. This paper presents a new methodology for semantic consistency management in MBSE. At its core, a matrix structure which extends the Multiple Domain Matrix (MDM) and Engineering Systems Matrix (ESM) is used to organize semantic relations between modeling elements created by using various modeling languages and tools, and to represent how they change over time. In addition, this paper describes how the new matrix can be automatically maintained by a plug-in module which manages the bidirectional information transformation between the model and the matrix. We show that the utilization of our methodology has potential in avoiding ambiguous namings in models, enhancing the traceability of modeling elements as well as reducing manual work. A real world engineering use case with air-conditioning is used to show the utilization of our methodology.


2011 ◽  
Vol 8 (2) ◽  
pp. 225-253 ◽  
Author(s):  
Barrett Bryant ◽  
Jeff Gray ◽  
Marjan Mernik ◽  
Peter Clarke ◽  
Robert France ◽  
...  

Developing software from models is a growing practice and there exist many model-based tools (e.g., editors, interpreters, debuggers, and simulators) for supporting model-driven engineering. Even though these tools facilitate the automation of software engineering tasks and activities, such tools are typically engineered manually. However, many of these tools have a common semantic foundation centered around an underlying modeling language, which would make it possible to automate their development if the modeling language specification were formalized. Even though there has been much work in formalizing programming languages, with many successful tools constructed using such formalisms, there has been little work in formalizing modeling languages for the purpose of automation. This paper discusses possible semantics-based approaches for the formalization of modeling languages and describes how this formalism may be used to automate the construction of modeling tools.


Sign in / Sign up

Export Citation Format

Share Document