scholarly journals Optical Coherence Tomography Angiography Monitors Cutaneous Wound Healing under Angiogenesis-Promoting Treatment in Diabetic and Non-Diabetic Mice

2021 ◽  
Vol 11 (5) ◽  
pp. 2447
Author(s):  
Martin Pfister ◽  
Kornelia Schützenberger ◽  
Bhavapriya J. Schäfer ◽  
Stefan Puchner ◽  
Hannes Stegmann ◽  
...  

During wound healing, the rapid re-establishment of a functional microcirculation in the wounded tissue is of utmost importance. We applied optical coherence tomography (OCT) angiography to evaluate vascular remodeling in an excisional wound model in the pinnae of C57BL/6 and db/db mice receiving different proangiogenic topical treatments. Analysis of the high-resolution OCT angiograms, including the four quantitative parameters vessel density, vessel length, number of bifurcations, and vessel tortuosity, revealed changes of the microvasculature and allowed identification of the overlapping wound healing phases hemostasis, inflammation, proliferation, and remodeling. Angiograms acquired in the inflammatory phase in the first days showed a dilation of vessels and recruitment of pre-existing capillaries. In the proliferative phase, angiogenesis with the sprouting of new capillaries into the wound tissue led to an increase of the OCT angiography parameters vessel density, normalized vessel length, number of bifurcations, and vessel tortuosity by 28–47%, 39–52%, 33–48%, and 3–8% versus baseline, respectively. After the peak observed on study days four to seven, the parameters slowly decreased but remained still elevated 18 days after wounding, indicating a continuing remodeling phase. Our study suggests that OCT angiography has the potential to serve as a valuable preclinical research tool in studies investigating impaired vascular remodeling during wound healing and potential new treatment strategies.

2020 ◽  
Vol 9 (4) ◽  
pp. 1094 ◽  
Author(s):  
Luisa Pierro ◽  
Alessandro Arrigo ◽  
Emanuela Aragona ◽  
Michele Cavalleri ◽  
Francesco Bandello

The aim of this study was to perform quantitative optical coherence tomography angiography (OCTA) assessment of arteritic and non-arteritic anterior ischemic optic neuropathies (AION; NAION). The study was designed as an observational, cross-sectional case series. All patients underwent complete ophthalmologic evaluation including LogMAR best-corrected visual acuity (BCVA), structural optical coherence tomography (OCT) and OCTA images, and dye-based angiography. Retinal nerve fiber layer (RNFL) thickness was obtained from structural OCT, and vessel density (VD) and vessel tortuosity (VT) were measured for each optic nerve head vascular plexus. After selecting the quadrants showing visual field defects, measured by Humphrey 30.2 perimetry (Zeiss Meditec, Dublin, CA, USA), we assessed the correlation between the localization of visual field defects and the quadrants showing impairments of RNFL, VD, and VT. Thirty naïve AION patients (15 arteritic AION (AAION) and 15 non-arteritic AION (NAION)) were included. LogMAR BCVA was 0.6 ± 0.2 for AAION and 0.3 ± 0.3 for NAION (p < 0.01). AAION and NAION eyes showed significant differences in terms of visual field involvement as well as VD and VT values, with remarkably worse alterations affecting AAION eyes. VD values perfectly matched with the quadrants showing RNFL and visual field defects. On the contrary, VT resulted remarkably decreased in all the quadrants, with even worse values in the quadrants showing RNFL and visual field alterations. The present study showed that AAION eyes are more injured than NAION ones. VD represents a good parameter for the detection of the main site on vascular impairment. Remarkably, VT resulted in a more sensitive parameter for the quantitative detection of blood flow impairment in AION disease.


2017 ◽  
Vol 24 (13) ◽  
pp. 1706-1714 ◽  
Author(s):  
Roberta Lanzillo ◽  
Gilda Cennamo ◽  
Chiara Criscuolo ◽  
Antonio Carotenuto ◽  
Nunzio Velotti ◽  
...  

Background: Optical coherence tomography (OCT) angiography is a new method to assess the density of the vascular networks. Vascular abnormalities are considered involved in multiple sclerosis (MS) pathology. Objective: To assess the presence of vascular abnormalities in MS and to evaluate their correlation to disease features. Methods: A total of 50 MS patients with and without history of optic neuritis (ON) and 46 healthy subjects were included. All underwent spectral domain (SD)-OCT and OCT angiography. Clinical history, Expanded Disability Status Scale (EDSS), Multiple Sclerosis Severity Score (MSSS) and disease duration were collected. Results: Angio-OCT showed a vessel density reduction in eyes of MS patients when compared to controls. A statistically significant reduction in all SD-OCT and OCT angiography parameters was noticed both in eyes with and without ON when compared with control eyes. We found an inverse correlation between SD-OCT parameters and MSSS ( p = 0.003) and between vessel density parameters and EDSS ( p = 0.007). Conclusion: We report a vessel density reduction in retina of MS patients. We highlight the clinical correlation between vessel density and EDSS, suggesting that angio-OCT could be a good marker of disease and of disability in MS.


2018 ◽  
Vol 8 (2) ◽  
pp. 135-150 ◽  
Author(s):  
Anthony J. Deegan ◽  
Wendy Wang ◽  
Shaojie Men ◽  
Yuandong Li ◽  
Shaozhen Song ◽  
...  

Author(s):  
Rajgopal Mani ◽  
Jon Holmes ◽  
Kittipan Rerkasem ◽  
Nikolaos Papanas

Dynamic optical coherence tomography (D-OCT) is a relatively new technique that may be used to study the substructures in the retina, in the skin and its microcirculation. Furthermore, D-OCT is a validated method of imaging blood flow in skin microcirculation. The skin around venous and mixed arterio-venous ulcers was imaged and found to have tortuous vessels assumed to be angiogenic sprouts, and classified as dots, blobs, coils, clumps, lines, and curves. When these images were analyzed and measurements of vessel density were made, it was observed that the prevalence of coils and clumps in wound borders was significantly greater compared with those at wound centers. This reinforced the belief of inward growth of vessels from wound edge toward wound center which, in turn, reposed confidence in following the wound edge to study healing. D-OCT imaging permits the structure and the function of the microcirculation to be imaged, and vessel density measured. This offers a new vista of skin microcirculation and using it, to better understand angiogenesis in chronic wounds.


Sign in / Sign up

Export Citation Format

Share Document