scholarly journals R1234ze(E) Flow Boiling inside a 2.5 mm ID Smooth Tube and Comparison against an Equivalent Microfin Tube

2021 ◽  
Vol 11 (6) ◽  
pp. 2627
Author(s):  
Andrea Diani ◽  
Luisa Rossetto

The air conditioning and refrigeration industry is now dealing with an imminent substitution of widely implemented refrigerants having a non-negligible global warming impact. Among the proposed hydrofluoroolefins, R1234ze(E) has thermodynamic and transport properties close to those of R134a, and thus it can be one of its substitutes. This paper experimentally analyzes R1234ze(E) flow boiling inside a smooth tube with an internal diameter of 2.5 mm. Mass velocity is investigated from 200 to 600 kg m−2 s−1, for vapor quality from 0.15 to 0.99. The test tube is electrically heated by the Joule effect, by supplying heat fluxes from 12 to 60 kW m−2. Heat transfer coefficients and frictional pressure drops were evaluated from the experimental tests, and compared against values estimated by empirical correlations. Additional experimental tests permitted the comparison between the thermal and hydraulic characteristics of the smooth tube and those of a microfin tube with an inner diameter at the fin tip of 2.4 mm. The comparison revealed the higher contribution of convective boiling for the microfin tube compared to the smooth tube for all of the investigated working conditions.

Author(s):  
Koichi Hata ◽  
Suguru Masuzaki

The subcooled boiling heat transfer (HT) and the steady-state critical heat fluxes (CHFs) in a short SUS304-tube with twisted-tape insert are systematically measured for mass velocities (G = 4016 to 13850 kg/m2s), inlet liquid temperatures (Tin = 285.82 to 363.96 K), outlet pressures (Pout = 764.76 to 889.02 kPa) and exponentially increasing heat input (Q = Q0exp(t/τ), τ = 8.5 s) by the experimental water loop comprised of a multistage canned-type circulation pump controlled by an inverter. The SUS304 test tube of inner diameter (d = 6 mm), heated length (L = 59.5 mm), effective length (Leff = 49.1 mm), L/d (= 9.92), Leff/d (= 8.18) and wall thickness (δ = 0.5 mm) with average surface roughness (Ra = 3.18 μm) is used in this work. The SUS304 twisted tape with twist ratio, y [= H/d = (pitch of 180° rotation)/d], of 3.39 is used. The relation between inner surface temperature and heat flux for the SUS304-tube with the twisted-tape insert are clarified from non-boiling to CHF. The subcooled boiling heat transfer for SUS304-tube with the twisted-tape insert is compared with our empty SUS304-tube data and the values calculated by our and other workers’ correlations for the subcooled boiling heat transfer. The influences of the twisted-tape insert and the swirl velocity on the subcooled boiling heat transfer and the CHFs are investigated into details and the widely and precisely predictable correlations of the subcooled boiling heat transfer and the CHFs for turbulent flow of water in the SUS304-tube with twisted-tape insert are given based on the experimental data. The correlations can describe the subcooled boiling heat transfer coefficients and the CHFs obtained in this work within −25 to +15% difference.


Author(s):  
M. Cortina Di´az ◽  
H. Boye ◽  
I. Hapke ◽  
J. Schmidt ◽  
Y. Staate ◽  
...  

Flow boiling heat transfer characteristics of water and hydrocarbons in mini and microchannels are experimentally studied. Two different test section geometries are employed; a circular channel with a hydraulic diameter of 1500 μm, and rectangular channels with height values of 300–700 μm and a width of 10mm. In both facilities the fluid flows upwards and the test sections, made of the nickel alloy Inconel 600, are directly electrically heated. Thus the evaporation takes place under the defined boundary condition of constant heat flux. Mass fluxes between 25 and 350 kg/(m2s) and heat fluxes from 20 to 350 kW/m2 at an inlet pressure of 0.3 MPa are examined. Infrared thermography is applied to scan the outer wall temperatures. These allow the identification of different boiling regions, boiling mechanisms and the determination of the local heat transfer coefficients. Measurements are carried out in initial, saturated and post-dryout boiling regions. The experimental results in the region of saturated boiling are compared with available correlations and with a physically founded model developed for convective boiling.


Author(s):  
Kathleen H. Peters ◽  
Francis A. Kulacki

Experiments are reported on convective boiling of water in a system of parallel micro-channels with a constant wall heat flux and highly sub-cooled inlet flow. The test section comprises a nickel plate containing ∼388 micro-channels along the center-plane with a mean hydraulic diameter of 145 μm with and a mean separation of 35 μm. The data set spans wall heat fluxes from 94 to 152 kW/m2, 8 < G < 24 kg/m2-s, and 2 < Re < 40. These parameters produce Weber, capillary and boiling numbers one to two orders of magnitude below those of the current published database. Overall heat transfer coefficients in flow boiling are estimated in the range 65 to 325 kW/m2-K. The present experiments more nearly emulate conditions for practical micro-channel heat exchangers compared to those of reported studies using artificially induced two-phase flows and either one or several micro-channels.


Author(s):  
Koichi Hata ◽  
Suguru Masuzaki

The subcooled boiling heat transfer and the steady state critical heat fluxes (CHFs) in a short vertical SUS304-tube for the flow velocities (u = 17.28 to 40.20 m/s), the inlet liquid temperatures (Tin = 293.30 to 362.49 K), the inlet pressures (Pin = 842.90 to 1467.93 kPa) and the exponentially increasing heat input (Q = Q0 exp(t/τ), τ = 10 s) were systematically measured by the experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The SUS304 test tubes of inner diameters (d = 3 and 6 mm), heated lengths (L = 33 and 59.5 mm), effective lengths (Leff = 23.3 and 49.1 mm), L/d (= 11 and 9.92), Leff/d (= 7.77 and 8.18), and wall thickness (δ = 0.5 mm) with average surface roughness (Ra = 3.18 μm) are used in this work. The inner surface temperature and the heat flux from non-boiling to CHF were clarified. The subcooled boiling heat transfer for SUS304 test tube was compared with our Platinum test tube data and the values calculated by other workers’ correlations for the subcooled boiling heat transfer. The influence of flow velocity on the subcooled boiling heat transfer and the CHF is investigated into details and the widely and precisely predictable correlation of the subcooled boiling heat transfer for turbulent flow of water in a short vertical SUS304-tube is given based on the experimental data. The correlation can describe the subcooled boiling heat transfer coefficients obtained in this work within 15% difference. Nucleate boiling surface superheats for the SUS304 test tube become very high. Those at the high liquid Reynolds number are close to the lower limit of Heterogeneous Spontaneous Nucleation Temperature. The dominant mechanisms of the flow boiling CHF in a short vertical SUS304-tube are discussed.


Author(s):  
Koichi Hata ◽  
Suguru Masuzaki

The subcooled boiling heat transfer (HT) and the steady-state critical heat fluxes (CHFs) in a short SUS304-tube with twisted-tape insert are systematically measured for mass velocities (G = 4016 to 13950 kg/m2s), inlet liquid temperatures (Tin = 285.82 to 363.96 K), outlet pressures (Pout = 764.76 to 889.02 kPa) and exponentially increasing heat input (Q = Q0 exp(t/τ), τ = 8.5 s) by the experimental water loop comprised of a multistage canned-type circulation pump controlled by an inverter. The SUS304 test tube of inner diameter (d = 6 mm), heated length (L = 59.5 mm), effective length (Leff = 49.1 mm), L/d (= 9.92), Leff/d (= 8.18) and wall thickness (δ = 0.5 mm) with average surface roughness (Ra = 3.89 μm) is used in this work. The SUS304 twisted tape with twist ratios, y [= H/d = (pitch of 180° rotation)/d], of 2.39, 3.39 and 4.45 are used. The relations between inner surface temperatures and heat fluxes for the SUS304-tubes with various twisted-tape inserts are clarified from non-boiling to CHF. The subcooled boiling heat transfers for SUS304-tubes with various twisted-tape inserts are compared with our empty SUS304-tube data and the values calculated by our and other workers’ correlations for the subcooled boiling heat transfer. The influences of the twisted-tape insert, the twist ratio and the swirl velocity on the subcooled boiling heat transfer and the CHFs are investigated into details and the widely and precisely predictable correlations of the subcooled boiling heat transfer and the CHFs for turbulent flow of water in the SUS304-tubes with twisted-tape inserts are given based on the experimental data. The correlations can describe the subcooled boiling heat transfer coefficients and the CHFs obtained in this work within −25 to +15% difference.


Author(s):  
Koichi Hata ◽  
Suguru Masuzaki

The subcooled boiling heat transfer and the steady state critical heat fluxes (CHFs) in a short SUS304-tube with twisted-tape insert are systematically measured for mass velocities (G=4016–13,950 kg/m2 s), inlet liquid temperatures (Tin=285.8–364.0 K), outlet pressures (Pout=764.8–889.0 kPa), and exponentially increasing heat input (Q=Q0 exp(t/τ) and τ=8.5 s) by the experimental water loop comprised of a multistage canned-type circulation pump controlled by an inverter. The SUS304 test tube of inner diameter (d=6 mm), heated length (L=59.5 mm), effective length (Leff=49.1 mm), L/d(=9.92), Leff/d(=8.18), and wall thickness (δ=0.5 mm) with average surface roughness (Ra=3.89 μm) is used in this work. The SUS304 twisted-tape with twist ratios y[=H/d=(pitch of 180 deg rotation)/d] of 2.39, 3.39, and 4.45 are used. The relations between inner surface temperatures and heat fluxes for the SUS304-tubes with various twisted-tape inserts are explored for different flow regimes ranging from single-phase flows to CHF. The subcooled boiling heat transfers for SUS304-tubes with various twisted-tape inserts are compared with authors’ empty SUS304-tube data and the values calculated by authors’ and other workers’ correlations for the subcooled boiling heat transfer. The influences of the twisted-tape insert, the twist ratio, and the swirl velocity on the subcooled boiling heat transfer and the CHFs are investigated into details, and the correlations of the subcooled boiling heat transfer and the CHFs for turbulent flow of water in the SUS304-tubes with twisted-tape inserts are given based on the experimental data. The precision or accuracy of a more widely set of correlations in predicting the present set of data is evaluated. The correlations can describe the subcooled boiling heat transfer coefficients and the CHFs obtained in this work from −25% to +15% difference.


Author(s):  
Cristiano Bigonha Tibiric¸a´ ◽  
Gherhardt Ribatski ◽  
John Richard Thome

Experimental flow boiling heat transfer results are presented for horizontal 1.0 and 2.2 mm I.D. (internal diameter) stainless steel tubes for tests with R1234ze, a new refrigerant developed as a substitute for R134a with a much lower GWP (Global Warming Potential). These two tube diameters were chosen due the necessity to a better investigation the macro to microchannel transition boundary. The experimental campaign includes mass velocities ranging from 50 to 1500 kg m−2s−1, heat fluxes from 10 to 300 kW m−2, exit saturation temperatures of 25, 31 and 35 °C, vapor qualities from 0.05 to 0.99 and heated lengths of 180 mm and 361 mm. Flow pattern characterization was performed using high-speed videos. Data for heat transfer coefficients, critical heat fluxes and flow pattern transitions were obtained. R1234ze demonstrated similar thermal performance to R134a data when running at similar conditions. For critical heat flux the correlation of Katto and Ohno (1984) best predicted the database with a mean absolute error of 6.3%. For the heat transfer coefficients, the Thome et al. (2004) three-zone model predicted the data for slug flow with 15.9% and Saitoh et al. (2007) predicted data for other flow regimes with mean absolute error of 19.4%.


Author(s):  
Koichi Hata ◽  
Suguru Masuzaki

The subcooled boiling heat transfer and the steady-state critical heat fluxes (CHFs) in a short SUS304-tube with twisted-tape insert are systematically measured for mass velocities (G=4016–13,850 kg/m2 s), inlet liquid temperatures (Tin=285.82–363.96 K), outlet pressures (Pout=764.76–889.02 kPa), and exponentially increasing heat input (Q=Q0 exp(t/τ), τ=8.5 s) by the experimental water loop comprised of a multistage canned-type circulation pump controlled by an inverter. The SUS304 test tube of inner diameter (d=6 mm), heated length (L=59.5 mm), effective length (Leff=49.1 mm), L/d(=9.92), Leff/d(=8.18), and wall thickness (δ=0.5 mm) with average surface roughness (Ra=3.18 μm) is used in this work. The SUS304 twisted tape with twist ratio, y(=H/d=(pitch of 180 deg rotation)/d), of 3.39 is used. The relation between inner surface temperature and heat flux for the SUS304-tube with the twisted-tape insert are clarified from nonboiling to CHF. The subcooled boiling heat transfer for SUS304-tube with the twisted-tape insert is compared with our empty SUS304-tube data and the values calculated by our and other workers’ correlations for the subcooled boiling heat transfer. The influences of the twisted-tape insert and the swirl velocity on the subcooled boiling heat transfer and the CHFs are investigated into details and the widely and precisely predictable correlations of the subcooled boiling heat transfer and the CHFs for turbulent flow of water in the SUS304-tube with twisted-tape insert are given based on the experimental data. The correlations can describe the subcooled boiling heat transfer coefficients and the CHFs obtained in this work within −25 to +15% difference.


2014 ◽  
Vol 13 (1) ◽  
pp. 59
Author(s):  
J. D. Oliveira ◽  
J. B. Copetti ◽  
I. C. Dias ◽  
M. H. Macagnan

Evaporators with mini and micro channels are one of the main focuses in the design and development of equipment applied to compact refrigeration systems. The objective of this work is to investigate pressure drop of natural refrigerant, isobutane (R-600a), in the single-phase flow through two small tubes, with 1.0 mm and 2.6 mm of internal diameter. Also, the pressure drop was analyzed in the boiling flow in a 2.6 mm internal diameter tube. The experimental tests included mass velocities of 188, 240, 280 and 370 kg/(m²s), heat fluxes in the range from 0 to 134 kW/m² and boiling flow the saturation temperature of 22 ºC and vapor quality up to 0.8. It was possible to observe the significant influence of the diameter and mass velocity on the total pressure drop and the frictional pressure drop, respectively. The experimental frictional pressure drop in flow boiling in 2.6 mm of internal diameter was compared with four different correlations in literature.


Author(s):  
Santosh Krishnamurthy ◽  
Yoav Peles

Flow boiling of water across a bank of circular staggered micro pin fins, 250 μm long and 100 μm diameter with pitch-to-diameter ratio of 1.5, was experimentally studied for mass fluxes ranging from 346 kg/m2s to 794 kg/m2s and surface heat fluxes ranging from 20 W/cm2 to 350 W/cm2. The local two-phase heat transfer coefficients were measured using thermistors located along the flow path of the channel. The flow was visualized and classified as vapor slug and annular flow patterns. Based on the observed flow patterns, the dominant heat transfer mechanism during boiling process was assumed to be convective boiling.


Sign in / Sign up

Export Citation Format

Share Document