Flow Boiling in Microchannels

Author(s):  
Kathleen H. Peters ◽  
Francis A. Kulacki

Experiments are reported on convective boiling of water in a system of parallel micro-channels with a constant wall heat flux and highly sub-cooled inlet flow. The test section comprises a nickel plate containing ∼388 micro-channels along the center-plane with a mean hydraulic diameter of 145 μm with and a mean separation of 35 μm. The data set spans wall heat fluxes from 94 to 152 kW/m2, 8 < G < 24 kg/m2-s, and 2 < Re < 40. These parameters produce Weber, capillary and boiling numbers one to two orders of magnitude below those of the current published database. Overall heat transfer coefficients in flow boiling are estimated in the range 65 to 325 kW/m2-K. The present experiments more nearly emulate conditions for practical micro-channel heat exchangers compared to those of reported studies using artificially induced two-phase flows and either one or several micro-channels.

Author(s):  
Wenhai Li ◽  
Ken Alabi ◽  
Foluso Ladeinde

Over the years, empirical correlations have been developed for predicting saturated flow boiling [1–15] and condensation [16–30] heat transfer coefficients inside horizontal/vertical tubes or micro-channels. In the present work, we have examined 30 of these models, and modified many of them for use in compact plate-fin heat exchangers. However, the various correlations, which have been developed for pipes and ducts, have been modified in our work to make them applicable to extended fin surfaces. The various correlations have been used in a low-order, one-dimensional, finite-volume type numerical integration of the flow and heat transfer equations in heat exchangers. The NIST’s REFPROP database [31] is used to account for the large variations in the fluid thermo-physical properties during phase change. The numerical results are compared with Yara’s experimental data [32]. The validity of the various boiling and condensation models for a real plate-fin heat exchanger design is discussed. The results show that some of the modified boiling and condensation correlations can provide acceptable prediction of heat transfer coefficient for two-phase flows in compact plate-fin heat exchangers.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Saptarshi Basu ◽  
Sidy Ndao ◽  
Gregory J. Michna ◽  
Yoav Peles ◽  
Michael K. Jensen

An experimental study of two-phase heat transfer coefficients was carried out using R134a in uniformly heated horizontal circular microtubes with diameters from 0.50 mm to 1.60 mm over a range of mass fluxes, heat fluxes, saturation pressures, and vapor qualities. Heat transfer coefficients increased with increasing heat flux and saturation pressure but were independent of mass flux. The effects of vapor quality on heat transfer coefficients were less pronounced and varied depending on the quality. The data were compared with seven flow boiling correlations. None of the correlations predicted the experimental data very well, although they generally predicted the correct trends within limits of experimental error. A correlation was developed, which predicted the heat transfer coefficients with a mean average error of 29%. 80% of the data points were within the ±30% error limit.


2016 ◽  
Vol 819 ◽  
pp. 181-185
Author(s):  
Agus Sunjarianto Pamitran ◽  
Ulfi Khabibah ◽  
Normah Mohd-Ghazali ◽  
Robiah Ahmad ◽  
Kiyoshi Saito

Hydrocarbon refrigerants have been widely used to replace HFCs. As hydrocarbon, R-290 has no ODP (Ozone Depletion Potential) and negligible GWP (Global Warming Potential). This paper presents flow boiling heat transfer in small tube with R-290 and R-22. The test tube has inner diameter of 7.6 mm and length of 1.07 m. In order to determine the heat transfer coefficient, experiments were carried out for heat fluxes ranging from 10 to 25 kW/m2, mass fluxes ranging from 204 to 628 kg/m2s, and saturation temperatures ranging from 1.87 to 11.9o C. The study analyzed the heat transfer through the local heat transfer coefficient along the flow under the variation of these different parameters. In comparison with R-22, R-290 provides higher heat transfer coefficients. In the prediction of the heat transfer coefficients of R-22 and R-290, the correlation of Shah (1982) and Choi et.al. (2009) best fitted the present experimental result, respectively.


Author(s):  
Santosh Krishnamurthy ◽  
Yoav Peles

Flow boiling of water across a bank of circular staggered micro pin fins, 250 μm long and 100 μm diameter with pitch-to-diameter ratio of 1.5, was experimentally studied for mass fluxes ranging from 346 kg/m2s to 794 kg/m2s and surface heat fluxes ranging from 20 W/cm2 to 350 W/cm2. The local two-phase heat transfer coefficients were measured using thermistors located along the flow path of the channel. The flow was visualized and classified as vapor slug and annular flow patterns. Based on the observed flow patterns, the dominant heat transfer mechanism during boiling process was assumed to be convective boiling.


2005 ◽  
Vol 127 (10) ◽  
pp. 1106-1114 ◽  
Author(s):  
Ali Koşar ◽  
Chih-Jung Kuo ◽  
Yoav Peles

Boiling flow of deionized water through 227μm hydraulic diameter microchannels with 7.5μm wide interconnected reentrant cavities at 47 kPa exit pressure has been investigated. Average two-phase heat transfer coefficients have been obtained over effective heat fluxes ranging from 28 to 445W∕cm2 and mass fluxes from 41 to 302kg∕m2s. A map is developed that divides the data into two regions where the heat transfer mechanisms are nucleation or convective boiling dominant. The map is compared to similar atmospheric exit pressure data developed in a previous study. A boiling mechanism transition criterion based on the Reynolds number and the Kandlikar k1 number is proposed.


Author(s):  
Koichi Araga ◽  
Keisuke Okamoto ◽  
Keiji Murata

This paper presents an experimental investigation of the forced convective boiling of refrigerant HCFC123 in a mini-tube. The inner diameters of the test tubes, D, were 0.51 mm and 0.30 mm. First, two-phase frictional pressure drops were measured under adiabatic conditions and compared with the correlations for conventional tubes. The frictional pressure drop data were lower than the correlation for conventional tubes. However, the data were qualitatively in accord with those for conventional tubes and were correlated in the form φL2−1/Xtt. Next, heat transfer coefficients were measured under the conditions of constant heat flux and compared with those for conventional tubes and for pool boiling. The heat transfer characteristics for mini-tubes were different from those for conventional tubes and quite complicated. The heat transfer coefficients for D = 0.51 mm increased with heat flux but were almost independent of mass flux. Although the heat transfer coefficients were higher than those for a conventional tube with D = 10.3 mm and for pool boiling in the low quality region, they decreased gradually with increasing quality. The heat transfer coefficients for D = 0.30 mm were higher than those for D = 0.51 mm and were almost independent of both mass flux and heat flux.


2015 ◽  
Vol 137 (11) ◽  
Author(s):  
D. Janssen ◽  
J. M. Dixon ◽  
S. J. Young ◽  
F. A. Kulacki

Heat transfer coefficients in a set of three symmetrically heated narrow gap channels arranged in line are reported at power densities of 1 kW/cm3 and wall heat flux of 3–40 W/cm2. This configuration emulates an electronics system wherein power dissipation can vary across an array of processors, memory chips, or other components. Three pairs of parallel ceramic resistance heaters in a nearly adiabatic housing form the flow passage, and length-to-gap ratios for each pair of heaters are 34 at a gap of 0.36 mm. Novec™ 7200 and 7300 are used as the heat transfer fluids. Nonuniform longitudinal power distributions are designed with the center heater pair at 1.5X and 2X the level of the first and third heater pairs. At all levels of inlet subcooling, single-phase heat transfer dominates over the first two heater pairs, while the third pair exhibits significant increases because of the presence of flow boiling. Reynolds numbers range from 250 to 1200, Weber numbers from 2 to 14, and boiling numbers from O(10−4) to O(10−3). Exit quality can reach 30% in some cases. Overall heat transfer coefficients of 40 kW/m2K are obtained. Pressure drops for both Novec™ heat transfer fluids are approximately equal at a given mass flux, and a high ratio of heat transfer to pumping power (coefficient of performance (COP)) is obtained. With a mass flux of 250 kg/m2s, heater temperatures can exceed 95 °C, which is the acceptable limit of steady operation for contemporary high performance electronics. Thus, an optimal operating point involving power density, power distribution, mass flux, and inlet subcooling is suggested by the data set for this benchmark multiheater configuration.


Author(s):  
Yun Whan Na ◽  
J. N. Chung

Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation method to investigate bubble dynamics, two-phase flow patterns, and boiling heat transfer. The momentum and energy equations were solved using a finite volume (FV) numerical method, while the liquid–vapor interface of a bubble is captured using the volume of fluid (VOF) technique. The effects of different constant wall heat fluxes and different channel heights on the boiling mechanisms were investigated. The effects of liquid velocity on the bubble departure diameter were also analyzed. The predicted bubble shapes and distribution profiles together with two-phase flow patterns are also provided.


Author(s):  
Cheol Huh ◽  
Moo Hwan Kim

With a single microchannel and a series of microheaters made with MEMS technique, two-phase pressure drop and local flow boiling heat transfer were investigated using deionized water in a single horizontal rectangular microchannel. The test microchannel has a hydraulic diameter of 100 μm and length of 40 mm. A real time observation of the flow patterns with simultaneous measurement are made possible. Tests are performed for mass fluxes of 90, 169, and 267 kg/m2s and heat fluxes of from 100 to 600 kW/m2. The experimental local flow boiling heat transfer coefficients and two-phase frictional pressure gradient are evaluated and the effects of heat flux, mass flux, and vapor qualities on flow boiling are studied. Both the evaluated experimental data are compared with existing correlations. The experimental heat transfer coefficients are nearly independent on mass flux and the vapor quality. Most of all correlations do not provide reliable heat transfer coefficients predictions with vapor quality and prediction accuracy. As for two-phase pressure drop, the measured pressure drop increases with the mass flux and heat flux. Most of all existing correlations of two-phase frictional pressure gradient do not predict the experimental data except some limited conditions.


Author(s):  
Haruhiko Ohta ◽  
Koichi Inoue ◽  
Yuichiro Shimada

Flow boiling heat transfer in a single small tube is investigated by using FC72 as a working fluid. The heat transfer coefficients are measured in the ranges of heat flux 2–24kW/m2 and mass velocity 100–400kg/m2s under the condition of near atmospheric pressure. Test tube, made of stainless steel, has an inner diameter of 0.51mm and a heated length of 200mm. The tube is located horizontally in a vacuum chamber to reduce the heat loss and to minimize the time to obtain data regarded as that of steady state. In the single-phase region, heat transfer coefficients due to forced convection are in good agreement with the values from the conventional theories. In the saturated region, measured heat transfer characteristics are quite different depending on whether the test liquid is deaerated or not deaerated before the experiments. By using deaerated liquid, three different heat transfer regimes are observed: In the first regime, the heat transfer is dominated by nucleate boiling in low vapor quality, and the heat transfer is deteriorated or enhanced depending on the channel confinement and heat flux. In the second regime, the heat transfer is dominated by two-phase forced convection in moderate quality as is well known for the tubes of normal size. In the third regime, the heat transfer is dominated again by two-phase forced convection, but is deteriorated in high quality. One or two regimes can disappear or become unclear depending on the conditions of flow and heating. The effects of vapor quality and mass velocity on the heat transfer characteristics due to two-phase forced convection in the moderate vapor quality are clarified in the experimental ranges tested. And a reason for the gradual heat transfer deterioration observed in high quality is discussed based on the liquid-vapor behaviors inherent in small diameter tubes.


Sign in / Sign up

Export Citation Format

Share Document