scholarly journals EM-Driven Multi-Objective Optimization of a Generic Monopole Antenna by Means of a Nested Trust-Region Algorithm

2021 ◽  
Vol 11 (9) ◽  
pp. 3958
Author(s):  
Adrian Bekasiewicz ◽  
Slawomir Koziel ◽  
Piotr Plotka ◽  
Krzysztof Zwolski

Antenna structures for modern applications are characterized by complex and unintuitive topologies that are difficult to develop when conventional, experience-driven techniques are of use. In this work, a method for the automatic generation of antenna geometries in a multi-objective setup has been proposed. The approach involves optimization of a generic spline-based radiator with an adjustable number of parameters using a nested, trust region-based algorithm. The latter iteratively increases the dimensionality of the radiator in order to gradually improve its performance. The method has been used to generate a set of nine antenna designs, representing a trade-off between minimization of reflection within 3.1 GHz to 10.6 GHz and a reduction of size. The properties of the optimized designs vary along the Pareto set from −10 dB to −20 dB and from 230 mm2 to 757 mm2 for the first and second objectives, respectively. The presented design approach has been validated against a genuine, population-based optimization routine. Furthermore, the smallest Pareto-optimal design has been compared to the antennas from the literature.

2013 ◽  
Vol 340 ◽  
pp. 136-140
Author(s):  
Liang You Shu ◽  
Ling Xiao Yang

The aim of this paper is to study the production and delivery decision problem in the Manufacturer Order Fulfillment. Owing to the order fulfillment optimization condition of the manufacturer, the multi-objective optimization model of manufacturers' production and delivery has been founded. The solution of the multi-objective optimization model is also very difficult. Fast and Elitist Non-dominated Sorting Genetic Algorithm (NSGA II) have been applied successfully to various test and real-world optimization problems. These population based the algorithm provide a diverse set of non-dominated solutions. The obtained non-dominated set is close to the true Pareto-optimal front. But its convergence to the true Pareto-optimal front is not guaranteed. Hence SBX is used as a local search procedure. The proposed procedure is successfully applied to a special case. The results validate that the algorithm is effective to the multi-objective optimization model.


Author(s):  
Praveen Kumar Dwivedi ◽  
Surya Prakash Tripathi

Background: Fuzzy systems are employed in several fields like data processing, regression, pattern recognition, classification and management as a result of their characteristic of handling uncertainty and explaining the feature of the advanced system while not involving a particular mathematical model. Fuzzy rule-based systems (FRBS) or fuzzy rule-based classifiers (mainly designed for classification purpose) are primarily the fuzzy systems that consist of a group of fuzzy logical rules and these FRBS are unit annexes of ancient rule-based systems, containing the "If-then" rules. During the design of any fuzzy systems, there are two main objectives, interpretability and accuracy, which are conflicting with each another, i.e., improvement in any of those two options causes the decrement in another. This condition is termed as Interpretability –Accuracy Trade-off. To handle this condition, Multi-Objective Evolutionary Algorithms (MOEA) are often applied within the design of fuzzy systems. This paper reviews the approaches to the problem of developing fuzzy systems victimization evolutionary process Multi-Objective Optimization (EMO) algorithms considering ‘Interpretability-Accuracy Trade-off, current research trends and improvement in the design of fuzzy classifier using MOEA in the future scope of authors. Methods: The state-of-the-art review has been conducted for various fuzzy classifier designs, and their optimization is reviewed in terms of multi-objective. Results: This article reviews the different Multi-Objective Optimization (EMO) algorithms in the context of Interpretability -Accuracy tradeoff during fuzzy classification. Conclusion: The evolutionary multi-objective algorithms are being deployed in the development of fuzzy systems. Improvement in the design using these algorithms include issues like higher spatiality, exponentially inhabited solution, I-A tradeoff, interpretability quantification, and describing the ability of the system of the fuzzy domain, etc. The focus of the authors in future is to find out the best evolutionary algorithm of multi-objective nature with efficiency and robustness, which will be applicable for developing the optimized fuzzy system with more accuracy and higher interpretability. More concentration will be on the creation of new metrics or parameters for the measurement of interpretability of fuzzy systems and new processes or methods of EMO for handling I-A tradeoff.


Author(s):  
H Sayyaadi ◽  
H R Aminian

A regenerative gas turbine cycle with two particular tubular recuperative heat exchangers in parallel is considered for multi-objective optimization. It is assumed that tubular recuperative heat exchangers and its corresponding gas cycle are in design stage simultaneously. Three objective functions including the purchased equipment cost of recuperators, the unit cost rate of the generated power, and the exergetic efficiency of the gas cycle are considered simultaneously. Geometric specifications of the recuperator including tube length, tube outside/inside diameters, tube pitch, inside shell diameter, outer and inner tube limits of the tube bundle and the total number of disc and doughnut baffles, and main operating parameters of the gas cycle including the compressor pressure ratio, exhaust temperature of the combustion chamber and the air mass flowrate are considered as decision variables. Combination of these objectives anddecision variables with suitable engineering and physical constraints (including NO x and CO emission limitations) comprises a set of mixed integer non-linear problems. Optimization programming in MATLAB is performed using one of the most powerful and robust multi-objective optimization algorithms, namely non-dominated sorting genetic algorithm. This approach is applied to find a set of Pareto optimal solutions. Pareto optimal frontier is obtained, and a final optimal solution is selected in a decision-making process.


2021 ◽  
pp. 1-59
Author(s):  
George Cheng ◽  
G. Gary Wang ◽  
Yeong-Maw Hwang

Abstract Multi-objective optimization (MOO) problems with computationally expensive constraints are commonly seen in real-world engineering design. However, metamodel based design optimization (MBDO) approaches for MOO are often not suitable for high-dimensional problems and often do not support expensive constraints. In this work, the Situational Adaptive Kreisselmeier and Steinhauser (SAKS) method was combined with a new multi-objective trust region optimizer (MTRO) strategy to form the SAKS-MTRO method for MOO problems with expensive black-box constraint functions. The SAKS method is an approach that hybridizes the modeling and aggregation of expensive constraints and adds an adaptive strategy to control the level of hybridization. The MTRO strategy uses a combination of objective decomposition and K-means clustering to handle MOO problems. SAKS-MTRO was benchmarked against four popular multi-objective optimizers and demonstrated superior performance on average. SAKS-MTRO was also applied to optimize the design of a semiconductor substrate and the design of an industrial recessed impeller.


Sign in / Sign up

Export Citation Format

Share Document