scholarly journals Kinect Azure–Based Accurate Measurement of Dynamic Valgus Position of the Knee—A Corrigible Predisposing Factor of Osteoarthritis

2021 ◽  
Vol 11 (12) ◽  
pp. 5536
Author(s):  
Ádám Uhlár ◽  
Mira Ambrus ◽  
Márton Kékesi ◽  
Eszter Fodor ◽  
László Grand ◽  
...  

(1) Dynamic knee valgus is a predisposing factor for anterior cruciate ligament rupture and osteoarthritis. The single-leg squat (SLS) test is a widely used movement pattern test in clinical practice that helps to assess the risk of lower-limb injury. We aimed to quantify the SLS test using a marker-less optical system. (2) Kinect validity and accuracy during SLS were established by marker-based OptiTrack and MVN Xsens motion capture systems. Then, 22 individuals with moderate knee symptoms during sports activities (Tegner > 4, Lysholm > 60) performed SLS, and this was recorded and analyzed with a Kinect Azure camera and the Dynaknee software. (3) An optical sensor coupled to an artificial-intelligence-based joint recognition algorithm gave a comparable result to traditional marker-based motion capture devices. The dynamic valgus sign quantified by the Q-angle at the lowest point of the squat is highly dependent on squat depth, which severely limits its comparability among subjects. In contrast, the medio-lateral shift of the knee midpoint at a fixed squat depth, expressed in the percentage of lower limb length, is more suitable to quantify dynamic valgus and compare values among individual patients. (4) The current study identified a new and reliable way of evaluating dynamic valgus of the knee joint by measuring the medial shift of the knee-over-foot at a standardized squat depth. Using a marker-less optical system widens the possibilities of evaluating lower limb functional instabilities for medical professionals.

2020 ◽  
Vol 10 (1) ◽  
pp. 7-14
Author(s):  
Mostafa Zarei ◽  
◽  
Kamran Johari ◽  
Rahim Bagherian ◽  
◽  
...  

Purpose: Taekwondo is a martial art and contact sport in which the athletes’ goal is to strike the opponent with maximal force. This fact exposes taekwondo practitioners to the permanent risk of injuries. Therefore, the current prospective study aimed to investigate the internal risk factors of lower extremity injuries in the adolescent male taekwondo players. Methods: In total, 60 adolescent taekwondo players of Iran Premier League voluntarily participated in this research. Before league commencement, navicular drop, Q angle, knee hyperextension angle, the dorsiflexion/plantarflexion range of motion, hamstring flexibility, and their dynamic balance were measured. Then, the injuries of these taekwondo players were recorded during the study time. Results: The injury incidence rate was 7.9 per 1000 hours of exposure (95% confidence interval, 5.33-10.40). The logistic regression analysis data indicated a significant relationship between the Q angle and injuries incidence rate (odds ratio=1.33, P=0.031). The taekwondo players whose Q angles were >14.5 degrees were 1.33 times more prone to lower limb injury. However, no significant relationship was observed between the other risk factors of the study cases and injuries incidence.  Conclusion: Regarding the research findings, the Q angle could predict lower limb injuries in the studied taekwondo players. Therefore, it is suggested that this index be considered in the preparticipation evaluation process and preventive strategies. 


2016 ◽  
Vol 64 (1) ◽  

The human foot is a flexible structure characterized by a pronounced medial longitudinal arch (MLA) that compresses and recoils during running. That process is actively driven by the intrinsic foot muscles and requires a proper stability of the MLA. This introduces the concept of foot core stability. Because the intrinsic foot muscles are often neglected by clinicians and researchers, the purpose of this article is to provide some guidelines for incorporating foot core training in prevention or rehabilitation programmes for runners. The intrinsic foot muscles play a key role in postural control and maintain balance during single leg stance by controlling the height of the MLA and the foot pronation. During running, these muscles lengthen eccentrically during the absorption phase and subsequently shorten as the arch recoils during the propulsive phase, functioning in parallel to the plantar fascia. As a consequence, the dysfunction or weakness of the MLA active support may lead to injuries (e.g. plantar fasciopathy, Achilles or Tibialis posterior tendinopathy, metatarsalgia or medial tibial stress syndrome), due to numerous biomechanical cascades and mechanisms. In order to counteract or prevent these impairments, there are two ways for enhancing the foot core stability. Firstly in terms of volitional control of the intrinsic foot muscles, the “short foot exercise” must be practiced. Secondly strengthening sessions using neuromuscular electrical stimulation of these muscles seem to be a promising strategy in order to support the MLA and control the pronation during running. Practically, the foot core strengthening protocol may beneficiate not only the runners affected by excessive pronation related injuries but also those who sustained a long term lower limb injury and may be affected by a detraining process. In addition we warmly recommend integrating this protocol in any lower limb injury prevention programme or strength and conditioning plan for runners.


2019 ◽  
Vol 47 (14) ◽  
pp. 3365-3372 ◽  
Author(s):  
Dimitris Dimitriou ◽  
Zhongzheng Wang ◽  
Diyang Zou ◽  
Tsung-Yuan Tsai ◽  
Naeder Helmy

Background: Although the femoral tunnel position is crucial to anatomic single-bundle anterior cruciate ligament (ACL) reconstruction, the recommendations for the ideal femoral footprint position are mostly based on cadaveric studies with small sample sizes, elderly patients with unknown ACL status, and 2-dimensional techniques. Furthermore, a potential difference in the femoral ACL footprint position and ACL orientation between ACL-ruptured and ACL-intact knees has not been reported in the literature. Hypothesis: The femoral ACL footprint position and ACL orientation vary significantly between ACL-ruptured and matched control ACL-intact knees. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Magnetic resonance images of the knees of 90 patients with an ACL rupture and 90 matched control participants who had a noncontact knee injury without an ACL rupture were used to create 3-dimensional models of the femur and tibia. The ACL footprints were outlined on each model, and their positions (normalized to the lateral condyle width) as well as ACL orientations were measured with an anatomic coordinate system. Results: The femoral ACL footprint in patients with an ACL rupture was located at 36.6% posterior and 11.2% distal to the flexion-extension axis (FEA). The ACL orientation was 46.9° in the sagittal plane, 70.3° in the coronal plane, and 20.8° in the transverse plane. The ACL-ruptured group demonstrated a femoral ACL footprint position that was 11.0% more posterior and 7.7% more proximal than that of the control group (all P < .01). The same patients also exhibited 5.7° lower sagittal elevation, 3.1° higher coronal plane elevation, and 7.9° lower transverse plane deviation (all P < .01). The optimal cutoff value of the femoral ACL footprint position to prevent an ACL rupture was at 30% posterior and 12% distal to the FEA. Conclusion: The ACL femoral footprint position might be a predisposing factor to an ACL rupture. Patients with a >30% posterior and <12% distal position of the femoral ACL footprint from the FEA might have a 51.2-times increased risk of an ACL rupture.


2013 ◽  
Vol 22 (3) ◽  
pp. 161-169 ◽  
Author(s):  
Ruth L. Chimenti ◽  
Sara A. Scholtes ◽  
Linda R. Van Dillen

Many risk factors have been identified as contributing to the development or persistence of low back pain (LBP). However, the juxtaposition of both high and low levels of physical activity being associated with LBP reflects the complexity of the relationship between a risk factor and LBP. Moreover, not everyone with an identified risk factor, such as a movement pattern of increased lumbopelvic rotation, has LBP.Objective:The purpose of this study was to examine differences in activity level and movement patterns between people with and people without chronic or recurrent LBP who participate in rotation-related sports.Design Case:Case-control study.Setting:University laboratory environment.Participants:52 people with chronic or recurrent LBP and 25 people without LBP who all play a rotation-related sport.Main Outcome Measures:Participants completed self-report measures including the Baecke Habitual Activity Questionnaire and a questionnaire on rotation-related sports. A 3-dimensional motion-capture system was used to collect movement-pattern variables during 2 lower-limb-movement tests.Results:Compared with people without LBP, people with LBP reported a greater difference between the sport subscore and an average work and leisure composite subscore on the Baecke Habitual Activity Questionnaire (F = 6.55, P = .01). There were no differences between groups in either rotation-related-sport participation or movement-pattern variables demonstrated during 2 lower-limb-movement tests (P > .05 for all comparisons).Conclusions:People with and people without LBP who regularly play a rotation-related sport differed in the amount and nature of activity participation but not in movement-pattern variables. An imbalance between level of activity during sport and daily functions may contribute to the development or persistence of LBP in people who play a rotation-related sport.


Sign in / Sign up

Export Citation Format

Share Document