scholarly journals Carbstone Pavers: A Sustainable Solution for the Urban Environment

2021 ◽  
Vol 11 (14) ◽  
pp. 6418
Author(s):  
Hadi Kazemi Kamyab ◽  
Peter Nielsen ◽  
Peter Van Mierloo ◽  
Liesbeth Horckmans

To reduce CO2 emissions from the building industry, one option is to replace cement in specific applications with alternative binders. The Carbstone technology is based on the reaction of calcium- and magnesium-containing minerals with CO2 to form carbonate binders. Mixes of carbon steel slag and stainless-steel slag, with tailored particle size distributions, were compacted with a vibro-press and subsequently carbonated in an autoclave to produce carbonated steel slag pavers. The carbonated materials sequester 100–150 g CO2/kg slag. Compressive and tensile splitting strength of the resulting pavers were determined, and the ratio was found to be comparable to that of concrete. The environmental performance of the Carbstone pavers, with an average tensile splitting strength of 3.6 MPa, was found to be in compliance with Belgian and Dutch leaching limit values for construction materials. In addition, leaching results for a concrete mix made with aggregates of crushed Carbstone pavers (simulating the so-called “second life” of pavers) demonstrate that the pavers can be recycled as aggregates in cement-bound products after their product lifetime.

2021 ◽  
Vol 1 (1) ◽  
pp. 88-111
Author(s):  
Andrea Di Maria ◽  
◽  
Annie Levasseur ◽  
Karel Van Acker ◽  
◽  
...  

<abstract> <p>The interest in circular economy for the construction sector is constantly increasing, and Global Warming Potential (GWP) is often used to assess the carbon footprint of buildings and building materials. However, GWP presents some methodological challenges when assessing the environmental impacts of construction materials. Due to the long life of construction materials, GWP calculation should take into consideration also time-related aspects. However, in the current GWP, any temporal information is lost, making traditional static GWP better suited for retrospective assessment rather than forecasting purposes. Building on this need, this study uses a time-dependent GWP to assess the carbon footprint of two newly developed construction materials, produced through the recycling of industrial residues (stainless steel slag and industrial goethite). The results for both materials are further compared with the results of traditional ordinary Portland cement (OPC) based concrete, presenting similar characteristics. The results of the dynamic GWP (D_GWP) are also compared to the results of traditional static GWP (S_GWP), to see how the methodological development of D_GWP may influence the final environmental evaluation for construction materials. The results show the criticality of the recycling processes, especially in the case of goethite valorization. The analysis shows also that, although the D_GWP did not result in a shift in the ranking between the three materials compared with S_GWP, it provides a clearer picture of emission flows and their effect on climate change over time.</p> </abstract>


2014 ◽  
Vol 881-883 ◽  
pp. 1199-1202
Author(s):  
Bo Zhang ◽  
Jin Hu

The magnetic performance of steel slag is special because it has a high content of Fe2O3. In this study, the difference of chemical compositions, mineral compositions, and particle size distributions between the two parts of steel slag by magnetic separation was investigated. The results show that the difference of chemical compositions especially the main oxide contents between the two parts of steel slag by magnetic separation is very small. And the difference of mineral compositions between the two parts of steel slag by magnetic separation is also very small. However, the particle size distributions of the two parts of steel slag by magnetic separation may differ from each other when steel slag contains many coarse particles.


1999 ◽  
Author(s):  
K.K. Ellis ◽  
R. Buchan ◽  
M. Hoover ◽  
J. Martyny ◽  
B. Bucher-Bartleson ◽  
...  

2010 ◽  
Vol 126 (10/11) ◽  
pp. 577-582 ◽  
Author(s):  
Katsuhiko FURUKAWA ◽  
Yuichi OHIRA ◽  
Eiji OBATA ◽  
Yutaka YOSHIDA

1996 ◽  
Vol 61 (4) ◽  
pp. 536-563
Author(s):  
Vladimír Kudrna ◽  
Pavel Hasal

To the description of changes of solid particle size in population, the application was proposed of stochastic differential equations and diffusion equations adequate to them making it possible to express the development of these populations in time. Particular relations were derived for some particle size distributions in flow and batch equipments. It was shown that it is expedient to complement the population balances often used for the description of granular systems by a "diffusion" term making it possible to express the effects of random influences in the growth process and/or particle diminution.


Sign in / Sign up

Export Citation Format

Share Document