scholarly journals Compost Quality and Sanitation on Industrial Scale Composting of Municipal Solid Waste and Sewage Sludge

2021 ◽  
Vol 11 (16) ◽  
pp. 7525
Author(s):  
Ana B. Siles-Castellano ◽  
Juan A. López-González ◽  
Macarena M. Jurado ◽  
María J. Estrella-González ◽  
Francisca Suárez-Estrella ◽  
...  

Municipal solid waste and sewage sludge are produced in large quantities that are often managed through industrial composting treatment. Because of their origin, composition, and complexity, ensuring adequate stabilization of the organic matter, and sanitation of fecal contaminants during composting is of the utmost significance, and difficult to achieve on an industrial scale. In this study, the operations of six industrial composting facilities that process municipal solid waste and sewage sludge were evaluated from the point of view of the sanitation achieved and the quality of the compost produced. In addition, the results were compared using the model of industrial compost from green waste. Differences between the plants were ascribable to operations other than composting systems. High phytotoxicity and fecal contamination above legislation thresholds were found in compost produced from municipal solid waste. In contrast, compost from sewage sludge were more stable and mature than those produced from green waste, and also had an adequate level of sanitation. The raw material and operational factors are of great relevance to obtain a stable, mature, and pathogen-free compost.

Author(s):  
Seongmin Kang ◽  
Joonyoung Roh ◽  
Eui-Chan Jeon

In the case of sewage sludge, as direct landfilling was recently prohibited, it is treated through incineration. Among the air pollutants discharged through the incineration of sewage sludge, NOx and SOx are considered secondary substances of PM2.5 and are being managed accordingly. However, NH3, another of the secondary substances of PM2.5, is not well managed, and the amount of NH3 discharged from sewage sludge incineration facilities has not been calculated. Therefore, in this study, we sought to determine whether NH3 is discharged in the exhaust gas of a sewage sludge incineration facility, and, when discharged, the NH3 emission factor was calculated, and the necessity of the development of the emission factor was reviewed. As a result of the study, it was confirmed that the amount of NH3 discharged from the sewage sludge incineration facility was 0.04 to 4.47 ppm, and the emission factor was calculated as 0.002 kg NH3/ton. The NH3 emission factor was compared with the NH3 emission factor of municipal solid waste proposed by EMEP/EEA (European Monitoring and Evaluation Programme/European Environment Agency) because the NH3 emission factor of the sewage sludge incineration facility had not been previously determined. As a result of the comparison, the NH3 emission factor of EMEP/EEA was similar to that of municipal solid waste, confirming the necessity of developing the NH3 emission factor of the sewage sludge incineration facility. In addition, the evaluation of the uncertainty of the additionally calculated NH3 emission factor was conducted quantitatively and the uncertainty range was presented for reference. In the future, it is necessary to improve the reliability of the NH3 emission factor of sewage sludge incineration facilities by performing additional analysis with statistical representation. In addition, the development of NH3 emission factors for industrial waste incineration facilities should be undertaken.


2016 ◽  
Vol 217 ◽  
pp. 82-89 ◽  
Author(s):  
M.Y. Qian ◽  
R.H. Li ◽  
J. Li ◽  
H. Wedwitschka ◽  
M. Nelles ◽  
...  

2018 ◽  
Vol 250 ◽  
pp. 853-859 ◽  
Author(s):  
Difang Zhang ◽  
Wenhai Luo ◽  
Yun Li ◽  
Guoying Wang ◽  
Guoxue Li

2009 ◽  
Vol 29 (1) ◽  
pp. 78-85 ◽  
Author(s):  
R. Valencia ◽  
W. van der Zon ◽  
H. Woelders ◽  
H.J. Lubberding ◽  
H.J. Gijzen

Sign in / Sign up

Export Citation Format

Share Document