Performance of co-composting sewage sludge and organic fraction of municipal solid waste at different proportions

2018 ◽  
Vol 250 ◽  
pp. 853-859 ◽  
Author(s):  
Difang Zhang ◽  
Wenhai Luo ◽  
Yun Li ◽  
Guoying Wang ◽  
Guoxue Li
2018 ◽  
Vol 77 ◽  
pp. 333-340 ◽  
Author(s):  
Difang Zhang ◽  
Wenhai Luo ◽  
Jing Yuan ◽  
Guoxue Li

1998 ◽  
Vol 38 (2) ◽  
pp. 127-132 ◽  
Author(s):  
N. Hamzawi ◽  
K. J. Kennedy ◽  
D. D. McLean

This study evaluated the technical feasibility of the anaerobic co-digestion process in the context of typical North American solid waste. Using biological activity tests, an optimal mixture was identified with 25% organic fraction of municipal solid waste (OFMSW) and 75% sewage sludge (65% raw primary sludge (RAW), 35% thickened WAS (TWAS)) based on biogas production. Also, based on the rate of biogas production, the most anaerobically biodegradable components of the OFMSW were paper and grass. The TWAS and the newspaper were found to be the least biodegradable components. Lab-scale testing indicated that alkaline pretreatment increased the biodegradability of the sewage sludge/OFMSW mixture the most, as compared to the untreated control. Thermochemically pretreated feedstocks inhibited anaerobic biodegradability as compared to the control, whereas the anaerobic biodegradability of thermally pretreated feed was not found to be significantly different from that of the control. Empirical models were developed based on alkaline dose, feed total solids concentration and particle size for biogas production and removal of TS and VS. All three experimental factors were found to be significant with respect to the response variables studied.


Author(s):  
Santo Fabio Corsino ◽  
Michele Torregrossa ◽  
Gaspare Viviani

The aim of this study was to evaluate the effect of the inoculum to substrate ratio (ISR) and the mixture ratio between organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) on the methane production potential achievable from anaerobic co-digestion (AcoD). Biochemical Methane Potential (BMP) assays at mesophilic temperature were used to determine the best AcoD configuration for maximizing methane yield and production rate, as well as to address possible synergistic effects. The maximum methane yield was observed at ISR of 1 and 60% OFMSW :40% SS as co-digestion mixture, whereas the highest methane production rate was achieved at ISR of 2 with the same mixture ratio (207 mL/gVS/d). Synergistic effects were highlighted in the mixtures having OFMSW below 60%, determining an increase of approximately 40% in methane production than the OFMSW and SS digestion as a sole substrate. The experimental data demonstrated that co-digestion of OFMSW and SS resulted in an increase in the productivity of methane than anaerobic digestion using the sole substrates, producing higher yields or production rates while depending on the ISR and the mixture ratio.


2000 ◽  
Vol 77 (1-3) ◽  
pp. 149-159 ◽  
Author(s):  
Antonis A. Zorpas ◽  
Evagelos Kapetanios ◽  
Giovanis A. Zorpas ◽  
Panagiotis Karlis ◽  
Apostolos Vlyssides ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document