scholarly journals Surface Defect Detection Methods for Industrial Products: A Review

2021 ◽  
Vol 11 (16) ◽  
pp. 7657
Author(s):  
Yajun Chen ◽  
Yuanyuan Ding ◽  
Fan Zhao ◽  
Erhu Zhang ◽  
Zhangnan Wu ◽  
...  

The comprehensive intelligent development of the manufacturing industry puts forward new requirements for the quality inspection of industrial products. This paper summarizes the current research status of machine learning methods in surface defect detection, a key part in the quality inspection of industrial products. First, according to the use of surface features, the application of traditional machine vision surface defect detection methods in industrial product surface defect detection is summarized from three aspects: texture features, color features, and shape features. Secondly, the research status of industrial product surface defect detection based on deep learning technology in recent years is discussed from three aspects: supervised method, unsupervised method, and weak supervised method. Then, the common key problems and their solutions in industrial surface defect detection are systematically summarized; the key problems include real-time problem, small sample problem, small target problem, unbalanced sample problem. Lastly, the commonly used datasets of industrial surface defects in recent years are more comprehensively summarized, and the latest research methods on the MVTec AD dataset are compared, so as to provide some reference for the further research and development of industrial surface defect detection technology.

2016 ◽  
Vol 836 ◽  
pp. 147-152
Author(s):  
Akhmad Faizin ◽  
Arif Wahjudi ◽  
I. Made Londen Batan ◽  
Agus Sigit Pramono

The quality of product of manufacturing industries depends on dimension accurately and surface roughness quality. There are many types of surface defects and levels of surface roughness quality. Ironing process is one type of metal forming process, which aims to reduce the wall thickness of the cup-shaped or pipes products, thus increasing the height of the wall. Manually surface inspection procedures are very inadequate to ensure the surface in guaranteed quality. To ensure strict requirements of customers, the surface defect inspection based on image processing techniques has been found to be very effective and popular over the last two decades. The paper has been reviewed some papers based on image processing for defect detection. It has been tried to find some alternatives of useful methods for product surface defect detection of ironing process.


Algorithms ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 257
Author(s):  
Yiming Xu ◽  
Kai Zhang ◽  
Li Wang

Aiming at the problems of inefficient detection caused by traditional manual inspection and unclear features in metal surface defect detection, an improved metal surface defect detection technology based on the You Only Look Once (YOLO) model is presented. The shallow features of the 11th layer in the Darknet-53 are combined with the deep features of the neural network to generate a new scale feature layer using the basis of the network structure of YOLOv3. Its goal is to extract more features of small defects. Furthermore, then, K-Means++ is used to reduce the sensitivity to the initial cluster center when analyzing the size information of the anchor box. The optimal anchor box is selected to make the positioning more accurate. The performance of the modified metal surface defect detection technology is compared with other detection methods on the Tianchi dataset. The results show that the average detection accuracy of the modified YOLO model is 75.1%, which ia higher than that of YOLOv3. Furthermore, it also has a great detection speed advantage, compared with faster region-based convolutional neural network (Faster R-CNN) and other detection algorithms. The improved YOLO model can make the highly accurate location information of the small defect target and has strong real-time performance.


2021 ◽  
Vol 2132 (1) ◽  
pp. 012030
Author(s):  
Xu Xie

Abstract The existing transmission line surface defect detection methods have the problem of incomplete image data set, resulting in a low recognition success rate. A transmission line surface defect detection method based on uav autonomous inspection is designed. The safety of power grid operation is evaluated, the local linearization process is transformed into linear equation expression, the image data set is obtained by uav autonomous inspection, the transmission line state is judged, the corresponding constraint conditions are set, the type of transmission line surface defects are identified, the number of image poles and towers is matched, and the detection mode is optimized by edge detection algorithm. Experimental results: The average recognition success rate of the transmission line surface defect detection method in this paper and the other two detection methods is 59.89%, 51.89% and 52.03%, proving that the transmission line surface defect detection method integrating UAV technology inspection has a wider application space.


Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 221
Author(s):  
Linjian Lei ◽  
Shengli Sun ◽  
Yue Zhang ◽  
Huikai Liu ◽  
Wenjun Xu

Recent years have witnessed the widespread research of the surface defect detection technology based on machine vision, which has spawned various effective detection methods. In particular, the rise of deep learning has allowed the surface defect detection technology to develop further. However, these methods based on deep learning still have some drawbacks. For example, the size of the sample data is not large enough to support deep learning; the location and recognition of surface defects are not accurate enough; the real-time performance of segmentation and classification is not satisfactory. In the context, this paper proposes an end-to-end convolutional neural network model: the pixel-wise segmentation and image-wise classification network (PSIC-Net). With the innovative design of a three-stage network structure, improved loss function and a two-step training mode, PSIC-Net can accurately and quickly segment and classify surface defects with a small dataset of training data. This model was evaluated with three public datasets, and compared with the most advanced defect detection methods. All the performance metrics prove the effectiveness and advancement of PSIC-Net.


Sign in / Sign up

Export Citation Format

Share Document