scholarly journals Effects of Process Parameters on Surface Straightness of Variable-Section Conical Parts during Hot Power Spinning

2021 ◽  
Vol 11 (17) ◽  
pp. 8187
Author(s):  
Yanli Liu ◽  
Xuedao Shu ◽  
Zewei Cen ◽  
Zixuan Li ◽  
Bohai Ye

How to form high-quality variable-section thin-walled conical parts through power spinning is a key issue for superalloy spinning manufacturing. A study into the hot power spinning deformation law of variable-section thin-walled conical parts and the effects of process parameters on surface straightness of forming quality are delineated in this paper. Through the establishment of finite element (FE) models using the single-factor and orthogonal design of experiments, the effects of four key process parameters on the surface straightness have been investigated and the optimal combination of process parameters have been yielded. These key factors include spinning temperature, roller nose radius, mandrel rotation rate and roller feed ratio. The results of FE simulation have been validated through the comparison of the surface straightness of modeled parts with those measured during a spinning experiment. The results reveal that, among the studied process parameters, the spinning temperature has the greatest influence on the surface straightness, followed by the roller nose radius and mandrel rotation rate, and the roller feed ratio has the least influence on the straightness. Larger mandrel rotation rate, smaller feed ratio and suitable spinning temperature can enhance the surface straightness.

2021 ◽  
Vol 8 ◽  
Author(s):  
Hongrui Zhang ◽  
Mei Zhan ◽  
Zebang Zheng ◽  
Rui Li ◽  
Wei Lyu ◽  
...  

The manufacturing process is inevitably accompanied with the production of scraps, which leads to resource waste and environmental pollution. Recycling and remanufacturing are the most commonly used approaches for metal scraps due to their well-established advantages from economic and environmental perspectives. In this study, spinning experiments with 2195 Al-Li alloy tailor welded blanks produced by friction stir welding from metal scraps were conducted under different process parameter designs. And then the effects of various process parameters on spinning of thin-walled curved surface parts were systematically studied. The results of the corresponding experimental groups show that the roller attack angle, the spinning clearance, and the installation method of tailor welded blanks have the most significant effect on the weld torsion angle. In addition, it was found that along the longitude direction of spun parts, the surface roughnesses of the weld of spun parts were greatly improved under the roller nose radius of 10 mm, the spinning clearance of 1.0 mm, the constant linear velocity, and the installation method of tailor welded blanks (the lower surface of tailor welded blanks is spun by rollers), while the process parameters have little significant effect on the surface roughness along the latitude direction of spun parts. Furthermore, it can be concluded that the forming profiles of spun parts fitted the mandrel well under the roller nose radius of 6 mm, double rollers, the roller attack angle of 30° and 45°, spinning clearance of 1.5 mm, and the installation method of tailor welded blanks (the upper surface of tailor welded blanks is spun by rollers). The research results will provide guidance for the precise spinning of thin-walled curved surface parts with tailor welded blanks. Thereby, it is also beneficial for green manufacturing involving recycling and remanufacturing of metal scraps.


2014 ◽  
Vol 597 ◽  
pp. 233-237
Author(s):  
Lin Lin Li ◽  
Zhong Yi Cai ◽  
Heng Qiu Xu ◽  
Mi Wang ◽  
Rui Zhang ◽  
...  

The stress-strain condition and flange state during spinning of magnesium alloy rotators was researched. The preliminary conclusion is obtained: There are three states during spinning of rotators, which appropriate "forward" and "straight" is conducive to forming, but the "backward" should be avoided. Based on ABAQUS/Explicit platform to analyze flange state and forming quality of these rotators under various load conditions. FE analysis shows: blank diameter, roller structure and feed ratio are key factors of formability. Most favorable process parameters are blank diameter 160mm, feed ratio 0.8r/mm, while using combination roller. Finally, the role of the main process parameters on flange state was verified by experiment method.


2020 ◽  
Vol 10 (17) ◽  
pp. 5932
Author(s):  
Yingxiang Xia ◽  
Xuedao Shu ◽  
Ying Zhu ◽  
Zixuan Li

Thin-walled conical parts with variable-section are usually made of superalloy material, with poor plasticity and complex forces, which are difficult to form and control. In this research, a thin-walled conical casing of superalloy GH1140 with variable-section is studied; the real stress–strain curve of the material is fitted and the load-displacement curves of superalloy GH1140 are obtained through a universal testing machine. To clarify the equivalent stress distribution on the upper surface of the thin-walled casing during the forming process and after unloading the rotary wheel, the finite element model of the thin-walled conical casing during the spinning forming process is established with the Simufact Forming finite element analysis software. The effects of processing parameters, such as the mandrel rotational speed ω, the roller feed ratio f and the gap deviation rate δ between the roller and mandrel, on the spinning forming load were obtained. The distribution and numerical trend of the tangential residual stress after forming were detected by X-ray diffraction, and the causes of defects such as flange instability were analyzed. The results of the forming test and the test of residual stress conform well with the simulation, which verifies the stability of the model. The research provides a theoretical basis for improving the forming quality of thin-walled parts with variable-section.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042057
Author(s):  
Ziqian Zhang ◽  
Ying Zhong

Abstract The section flattening phenomenon (namely Bazier effect) will occur in the large bending deformation stage of thin-walled pipe in the continuous straightening process. The maximum section flattening amount and the residual section flattening amount are important process parameters, which are the basis for calculating the subsequent process parameters of the flattening circle, and directly determine the roundness of the final pipe and the product quality. However, it is hard to be obtained by the theoretical or experimental methods. Therefore, based on the structure and process parameters of the leveler, a finite element model was built to simulate the section flattening process. Then, ANSYS/LS-DYNA software was used to dynamically simulate the bending flattening phenomenon of thin-walled pipe in the continuous straightening process, and the stress and strain nephographic of the flattening deformation zone was obtained. By recording the position curve of the key nodes in the preventing process, the section flattening amount of the thin-walled pipe in the large bending deformation stage in the continuous straightening process was determined. The simulation results show that the dynamic simulation method can effectively predict the section flattening of thin-walled pipe in the process of continuous straightening.


2021 ◽  
Vol 1035 ◽  
pp. 152-160
Author(s):  
Hai Bao Wu ◽  
Fu Long Chen ◽  
De Gui Liu ◽  
Ji Zhen Li ◽  
Jian Fei Wang

Spinning forming is an effective method for processing thin-walled rotating body parts. The influence of process parameters on the spinning forming limit of materials was studied for the four high-temperature alloys of GH3044, GH3625, GH3536 and GH4169 used in aero-engines. The results can be used as aero-engine high-temperature alloy parts spinning process and provides experimental basis and process guidance. The research results showed that the forming temperature had a significant effect on the spinning forming performance of superalloy materials. When the temperature increased to 800°C and above, the ultimate thinning rate raised 70%. The ultimate thinning rate of GH4169 was higher than the other three materials and GH3044 and GH3536 was at the middle level, GH3625 was relatively low. At the same time, the feed ratio and the corner radius of the rotary wheel had a certain influence on the ultimate thinning rate of different superalloys. The spinning process needs to select reasonable process parameters according to the actual situation when the spinning is applied to manufacture parts.


Author(s):  
John Martin

The pilger process is a cold-worked mechanical process that combines the elements of extrusion, rolling, and upsetting for the formation of thin-walled tubes. This complex manufacturing process relies on the results of trial and error testing programs, experimental parameter sensitivity studies, and prototypical applications to advance the technology. This finite element modelling effort describes the methods, models, and assumptions used to assess the process parameters used to manufacture thin-walled tubing. The modelling technique breaks down the manufacturing process into smaller computer generated models representing fundamental process functions. Each of these models is linked with the overall process simulation. Simplified assumptions are identified and supporting justifications provided. This work represents proof of principle modelling techniques, using large deformation, large strain, finite element software. These modelling techniques can be extended to more extensive parameter studies evaluating the effects of pilger process parameter changes on final tube stress and strain states and their relationship to defect formation/propagation. Sensitivity studies on input variables and the process parameters associated with one pass of the pilger process are also included. The modelling techniques have been extended to parameter studies evaluating the effects of pilger process parameter changes on tube stress and strain states and their relationship to defect formation. Eventually a complex qualified 3-D model will provide more accurate results for process evaluation purposes. However, the trends and results reported are judged adequate for examining process trends and parameter variability.


Sign in / Sign up

Export Citation Format

Share Document