scholarly journals Trajectory Tracking with Adaptive Robust Control for Quadrotor

2021 ◽  
Vol 11 (18) ◽  
pp. 8571
Author(s):  
Tadeo Espinoza-Fraire ◽  
Armando Saenz ◽  
Francisco Salas ◽  
Raymundo Juarez ◽  
Wojciech Giernacki

This work proposes three robust mechanisms based on the MIT rule and the sliding-mode techniques. These robust mechanisms have to tune the gains of an adaptive Proportional-Derivative controller to steer a quadrotor in a predefined trajectory. The adaptive structure is a model reference adaptive control (MRAC). The robust mechanisms proposed to achieve the control objective (trajectory tracking) are MIT rule, MIT rule with sliding mode (MIT-SM), MIT rule with twisting (MIT-Twisting), and MIT rule with high order sliding mode (MIT-HOSM).

2014 ◽  
Vol 875-877 ◽  
pp. 2030-2035 ◽  
Author(s):  
Marian Gaiceanu ◽  
Cristian Eni ◽  
Mihaita Coman ◽  
Romeo Paduraru

Due to the parametric and structural uncertainty of the DC drive system, an adaptive control method is necessary. Therefore, an original model reference adaptive control (MRAC) for DC drives is proposed in this paper. MRAC ensures on-line adjustment of the control parameters with DC machine parameter variation. The proposed adaptive control structure provides regulating advantages: asymptotic cancellation of the tracking error, fast and smooth evolution towards the origin of the phase plan due to a sliding mode switching k-sigmoid function. The reference model can be a real strictly positive function (the tracking error is also the identification error) as its order is relatively higher than one degree. For this reason, the synthesis of the adaptive control will use a different type of error called augmented or enhanced error. The DC machine with separate excitation is fed at a constant flux. This adaptive control law assures robustness to external perturbations and to unmodelled dynamics.


Sign in / Sign up

Export Citation Format

Share Document