scholarly journals FLINT: Flows for the Internet of Things

2021 ◽  
Vol 11 (19) ◽  
pp. 9303
Author(s):  
Bart Moons ◽  
Michiel Aernouts ◽  
Vincent Bracke ◽  
Bruno Volckaert ◽  
Jeroen Hoebeke

New protocols and technologies are continuously competing in the Internet of Things. This has resulted in a fragmented landscape that complicates the integration of different solutions. Standardization efforts try to avoid this problem, however within a certain ecosystem, multiple standards still require integration to enable trans-sector innovation. Moreover, existing devices require transformations to fit in an ecosystem. In this paper, we discuss several integration problems in the field of Low Power Wide Area Networks in the context of the Port of the Future and propose a new distributed platform architecture, called FLINT. FLINT is a framework to program flexible and configurable flows on a per device basis. A flow is constructed from fine-grained components, called adapters. Due to the modularity of an adapter, users can easily integrate existing software. We evaluated FLINT based on five levels of interoperability and show that FLINT can be used to interconnect non-interoperable systems and protocols on every level. We have also implemented FLINT in a container based environment and demonstrated that a basic configuration has a 99% forwarding rate of 17.500 513-byte packets per second, showing that the architecture can deliver good performance.

Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Eljona Zanaj ◽  
Giuseppe Caso ◽  
Luca De Nardis ◽  
Alireza Mohammadpour ◽  
Özgü Alay ◽  
...  

In the last years, the Internet of Things (IoT) has emerged as a key application context in the design and evolution of technologies in the transition toward a 5G ecosystem. More and more IoT technologies have entered the market and represent important enablers in the deployment of networks of interconnected devices. As network and spatial device densities grow, energy efficiency and consumption are becoming an important aspect in analyzing the performance and suitability of different technologies. In this framework, this survey presents an extensive review of IoT technologies, including both Low-Power Short-Area Networks (LPSANs) and Low-Power Wide-Area Networks (LPWANs), from the perspective of energy efficiency and power consumption. Existing consumption models and energy efficiency mechanisms are categorized, analyzed and discussed, in order to highlight the main trends proposed in literature and standards toward achieving energy-efficient IoT networks. Current limitations and open challenges are also discussed, aiming at highlighting new possible research directions.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1793 ◽  
Author(s):  
Yuta Nakamura ◽  
Yuanyu Zhang ◽  
Masahiro Sasabe ◽  
Shoji Kasahara

Due to the rapid penetration of the Internet of Things (IoT) into human life, illegal access to IoT resources (e.g., data and actuators) has greatly threatened our safety. Access control, which specifies who (i.e., subjects) can access what resources (i.e., objects) under what conditions, has been recognized as an effective solution to address this issue. To cope with the distributed and trust-less nature of IoT systems, we propose a decentralized and trustworthy Capability-Based Access Control (CapBAC) scheme by using the Ethereum smart contract technology. In this scheme, a smart contract is created for each object to store and manage the capability tokens (i.e., data structures recording granted access rights) assigned to the related subjects, and also to verify the ownership and validity of the tokens for access control. Different from previous schemes which manage the tokens in units of subjects, i.e., one token per subject, our scheme manages the tokens in units of access rights or actions, i.e., one token per action. Such novel management achieves more fine-grained and flexible capability delegation and also ensures the consistency between the delegation information and the information stored in the tokens. We implemented the proposed CapBAC scheme in a locally constructed Ethereum blockchain network to demonstrate its feasibility. In addition, we measured the monetary cost of our scheme in terms of gas consumption to compare our scheme with the existing Blockchain-Enabled Decentralized Capability-Based Access Control (BlendCAC) scheme proposed by other researchers. The experimental results show that the proposed scheme outperforms the BlendCAC scheme in terms of the flexibility, granularity, and consistency of capability delegation at almost the same monetary cost.


2021 ◽  
Vol 20 (5s) ◽  
pp. 1-21
Author(s):  
Gyeongmin Lee ◽  
Bongjun Kim ◽  
Seungbin Song ◽  
Changsu Kim ◽  
Jong Kim ◽  
...  

In the Internet of Things (IoT) environment, detecting a faulty device is crucial to guarantee the reliable execution of IoT services. To detect a faulty device, existing schemes trace a series of events among IoT devices within a certain time window, extract correlations among them, and find a faulty device that violates the correlations. However, if a few users share the same IoT environment, since their concurrent activities make non-correlated devices react together in the same time window, the existing schemes fail to detect a faulty device without differentiating the concurrent activities. To correctly detect a faulty device in the multiple concurrent activities, this work proposes a new precise correlation extraction scheme, called PCoExtractor. Instead of using a time window, PCoExtractor continuously traces the events, removes unrelated device statuses that inconsistently react for the same activity, and constructs fine-grained correlations. Moreover, to increase the detection precision, this work newly defines a fine-grained correlation representation that reflects not only sensor values and functionalities of actuators but also their transitions and program states such as contexts. Compared to existing schemes, PCoExtractor detects and identifies 40.06% more faults for 4 IoT services with concurrent activities of 12 users while reducing 80.3% of detection and identification times.


2020 ◽  
Vol 27 (1) ◽  
pp. 206-213 ◽  
Author(s):  
Carles Gomez ◽  
Ana Minaburo ◽  
Laurent Toutain ◽  
Dominique Barthel ◽  
Juan Carlos Zuniga

Sign in / Sign up

Export Citation Format

Share Document