scholarly journals Energy Efficiency in Short and Wide-Area IoT Technologies—A Survey

Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Eljona Zanaj ◽  
Giuseppe Caso ◽  
Luca De Nardis ◽  
Alireza Mohammadpour ◽  
Özgü Alay ◽  
...  

In the last years, the Internet of Things (IoT) has emerged as a key application context in the design and evolution of technologies in the transition toward a 5G ecosystem. More and more IoT technologies have entered the market and represent important enablers in the deployment of networks of interconnected devices. As network and spatial device densities grow, energy efficiency and consumption are becoming an important aspect in analyzing the performance and suitability of different technologies. In this framework, this survey presents an extensive review of IoT technologies, including both Low-Power Short-Area Networks (LPSANs) and Low-Power Wide-Area Networks (LPWANs), from the perspective of energy efficiency and power consumption. Existing consumption models and energy efficiency mechanisms are categorized, analyzed and discussed, in order to highlight the main trends proposed in literature and standards toward achieving energy-efficient IoT networks. Current limitations and open challenges are also discussed, aiming at highlighting new possible research directions.

2020 ◽  
Vol 27 (1) ◽  
pp. 206-213 ◽  
Author(s):  
Carles Gomez ◽  
Ana Minaburo ◽  
Laurent Toutain ◽  
Dominique Barthel ◽  
Juan Carlos Zuniga

2019 ◽  
Vol 11 (3) ◽  
pp. 57 ◽  
Author(s):  
Lorenzo Vangelista ◽  
Marco Centenaro

The low-power wide-area network (LPWAN) paradigm is gradually gaining market acceptance. In particular, three prominent LPWAN technologies are emerging at the moment: LoRaWAN™ and SigFox™, which operate on unlicensed frequency bands, and NB-IoT, operating on licensed frequency bands. This paper deals with LoRaWAN™, and has the aim of describing a particularly interesting feature provided by the latest LoRaWAN™ specification—often neglected in the literature—i.e., the roaming capability between different operators of LoRaWAN™ networks, across the same country or even different countries. Recalling that LoRaWAN™ devices do not have a subscriber identification module (SIM) like cellular network terminals, at a first glance the implementation of roaming in LoRaWAN™ networks could seem intricate. The contribution of this paper consists in explaining the principles behind the implementation of a global LoRaWAN network, with particular focus on how to cope with the lack of the SIM in the architecture and how to realize roaming.


2019 ◽  
Vol 7 (6) ◽  
pp. 1604-1611 ◽  
Author(s):  
Ruge Quhe ◽  
Jianxiu Chen ◽  
Jing Lu

Improvement of the energy efficiency is an imperative need for electronics towards the Internet of Things (IoT).


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6837
Author(s):  
Adeiza J. Onumanyi ◽  
Adnan M. Abu-Mahfouz ◽  
Gerhard P. Hancke

The Internet of Things (IoT) is an emerging paradigm that enables many beneficial and prospective application areas, such as smart metering, smart homes, smart industries, and smart city architectures, to name but a few. These application areas typically comprise end nodes and gateways that are often interconnected by low power wide area network (LPWAN) technologies, which provide low power consumption rates to elongate the battery lifetimes of end nodes, low IoT device development/purchasing costs, long transmission range, and increased scalability, albeit at low data rates. However, most LPWAN technologies are often confronted with a number of physical (PHY) layer challenges, including increased interference, spectral inefficiency, and/or low data rates for which cognitive radio (CR), being a predominantly PHY layer solution, suffices as a potential solution. Consequently, in this article, we survey the potentials of integrating CR in LPWAN for IoT-based applications. First, we present and discuss a detailed list of different state-of-the-art LPWAN technologies; we summarize the most recent LPWAN standardization bodies, alliances, and consortia while emphasizing their disposition towards the integration of CR in LPWAN. We then highlight the concept of CR in LPWAN via a PHY-layer front-end model and discuss the benefits of CR-LPWAN for IoT applications. A number of research challenges and future directions are also presented. This article aims to provide a unique and holistic overview of CR in LPWAN with the intention of emphasizing its potential benefits.


In the era of new technologies, Fog computing becomes very popular in today’s scenario. Fog computing paradigm brings a concept that extends cloud computing to the edge and close proximity to the Internet of Things (IoT) network. The fundamental components of fog computing are fog nodes. Additionally, fog nodes are energy efficient nodes. Numerous fog nodes are deployed in the associated fields that will handle the Internet of Things (IoT) sensors computation. Meanwhile, the Internet of Things (IoT) faces challenges, among which energy efficiency is one of the most prominent or critical challenges in the current scenario. However, sensor devices are an energy constraintthatcreateshotspotduringtheroutingprocess.Forthis reason,tohandlesuchconstraints,thispaperpresentsaneffective hotspot mechanism using fog nodes that demonstrate the routing process and directed the sensors to choose the routing path as selected by the fog node. Moreover, fog node will act as a decision maker node and maintain the energy efficiency of sensors during the routing as fog nodes are energy efficient nodes. As it moves towards the emergency situation, the most appropriate and effective routing approach has been designed who maintain the energy level of sensors will be high during the routing process. The proposed routing technique could be better performance for the sake of efficient routing in terms of energy consumption and prolonging networklifetime.


Sign in / Sign up

Export Citation Format

Share Document