scholarly journals Prediction of Shield Machine Attitude Based on Various Artificial Intelligence Technologies

2021 ◽  
Vol 11 (21) ◽  
pp. 10264
Author(s):  
Haohan Xiao ◽  
Bo Xing ◽  
Yujie Wang ◽  
Peng Yu ◽  
Lipeng Liu ◽  
...  

The shield machine attitude (SMA) is the most important parameter in the process of tunnel construction. To prevent the shield machine from deviating from the design axis (DTA) of the tunnel, it is of great significance to accurately predict the dynamic characteristics of SMA. We establish eight SMA prediction models based on the data of five earth pressure balance (EPB) shield machines. The algorithms adopted in the models are four machine learning (ML) algorithms (KNN, SVR, RF, AdaBoost) and four deep learning (DL) algorithms (BPNN, CNN, LSTM, GRU). This paper obtains the hyperparameters of the models by utilizing grid search and K-fold cross-validation techniques and uses EVS and RMSE to verify and evaluate the prediction performances of the models. The prediction results reveal that the two best algorithms are the LSTM and GRU with EVS > 0.98 and RMSE < 1.5. Then, integrating ML algorithms and DL algorithms, we design a warning predictor for SMA. Through the historical 5-cycle data, the predictor can give a warning in advance if the SMA deviates significantly from DTA. This study indicates that AI technologies have considerable promise in the field of SMA dynamic prediction.

2011 ◽  
Vol 255-260 ◽  
pp. 3282-3286
Author(s):  
Xiu Shan Wang ◽  
Li Wang ◽  
Xiao Jun Ding

The method to analysis the strength of planetary trains’ carriers of EPB(earth pressure balance) shield machine is presented in this paper. The structure of the shield machine trains is analyzed and the 3-D solid model of the carrier is built with Pro/E. After the load on the carrier has been dealt with, the strength of carrier is calculated by means of finite element method. The results via ANSYS show that the max stress and strain on the carriers are increasing as the increasing load on it. The max stress is lying on the joint point of the carrier and planetary gear shaft because of the bending deformation of the shaft.


2002 ◽  
Vol 39 (6) ◽  
pp. 1273-1287 ◽  
Author(s):  
Manuel Melis ◽  
Luis Medina ◽  
José M Rodríguez

The development of tunnelling projects under heavily populated cities has been rapidly increasing around the world during the last decades. Since tunnel construction can have disastrous effects on buildings, structures, and utilities near the excavation, construction methods have necessarily to provide maximum safety inside and outside the tunnel. To predict and correct dangerous ground movements due to the tunnelling works, the authors developed a numerical model to simulate the earth pressure balance (EPB) excavation procedure and injection to complement some deficiencies found in previous analytical or empirical subsidence estimating procedures. This model takes into account the full excavation sequence and has been validated by a large amount of monitoring data from the previous Madrid Metro extension. In the present paper, several predictive methods are used to predict the ground movements generated during a new Madrid Metro extension project consisting of 48 km of tunnel (1999–2003). At the end of the works the results will be compared with data from monitored sections placed in all five cities linked by the extension. Conclusions about the applicability and accuracy of the methods will be established with the aim of helping researchers and engineers in their future projects.Key words: ground movements, monitoring, numerical modelling and analysis, settlement, tunnels.


2012 ◽  
Vol 490-495 ◽  
pp. 2748-2751
Author(s):  
Li Zhi Wen ◽  
Zhi Wei Guan ◽  
Chen Fu Liu ◽  
Xi Tong Zhang

The method to analysis the strength of planetary trains’ carriers of EPB(earth pressure balance) shield machine is presented in this paper. The structure of the shield machine trains is analyzed and the 3-D solid model of the carrier is built with Pro/E. After the load on the carrier has been dealt with, the strength of carrier is calculated by means of finite element method. The results via ANSYS show that the max stress and strain on the carriers are increasing as the increasing load on it. The max stress is lying on the joint point of the carrier and planetary gear shaft because of the bending deformation of the shaft


2011 ◽  
Vol 101-102 ◽  
pp. 258-262 ◽  
Author(s):  
Qian Wei Zhuang ◽  
Jian Zhong Lv ◽  
Hua Qin Jiang

This paper introduced the characteristics of eccentric multi-axes rectangular shield machine and made comparisons to traditional earth pressure balance shield machine. And introduced structure form of eccentric multi-axes, and carried out calculation of cutter head driving. The author completed the finite element calculation of eccentric axis with COSMOS Works, the results of calculation shows that maximum stress occurs at the place at gear keyway of eccentric shaft, but the eccentric shaft can satisfy the requirements in shield design according to big load in cutting soil. Finally, the eccentric shaft was applied in several engineering cases without any structural problems.


2010 ◽  
Vol 97-101 ◽  
pp. 3303-3307
Author(s):  
Li Feng Chen ◽  
Xiao Ling Wu ◽  
Da Tong Qin

The method to analysis the strength of planetary trains’ carriers of EPB(earth pressure balance) shield machine is presented in this paper. The structure of the shield machine trains is analyzed and the 3-D solid model of the carrier is built with Pro/E. After the load on the carrier has been dealt with, the strength of carrier is calculated by means of finite element method. The results via ANSYS show that the max stress and strain on the carriers are increasing as the increasing load on it. The max stress is lying on the joint point of the carrier and planetary gear shaft because of the bending deformation of the shaft.


Sign in / Sign up

Export Citation Format

Share Document