Tunnel construction with Earth Pressure Balance shields and measures to minimize settlements under urban infrastructure in London

Author(s):  
K Rieker ◽  
David Court ◽  
T Schubert
2002 ◽  
Vol 39 (6) ◽  
pp. 1273-1287 ◽  
Author(s):  
Manuel Melis ◽  
Luis Medina ◽  
José M Rodríguez

The development of tunnelling projects under heavily populated cities has been rapidly increasing around the world during the last decades. Since tunnel construction can have disastrous effects on buildings, structures, and utilities near the excavation, construction methods have necessarily to provide maximum safety inside and outside the tunnel. To predict and correct dangerous ground movements due to the tunnelling works, the authors developed a numerical model to simulate the earth pressure balance (EPB) excavation procedure and injection to complement some deficiencies found in previous analytical or empirical subsidence estimating procedures. This model takes into account the full excavation sequence and has been validated by a large amount of monitoring data from the previous Madrid Metro extension. In the present paper, several predictive methods are used to predict the ground movements generated during a new Madrid Metro extension project consisting of 48 km of tunnel (1999–2003). At the end of the works the results will be compared with data from monitored sections placed in all five cities linked by the extension. Conclusions about the applicability and accuracy of the methods will be established with the aim of helping researchers and engineers in their future projects.Key words: ground movements, monitoring, numerical modelling and analysis, settlement, tunnels.


2021 ◽  
Vol 11 (21) ◽  
pp. 10264
Author(s):  
Haohan Xiao ◽  
Bo Xing ◽  
Yujie Wang ◽  
Peng Yu ◽  
Lipeng Liu ◽  
...  

The shield machine attitude (SMA) is the most important parameter in the process of tunnel construction. To prevent the shield machine from deviating from the design axis (DTA) of the tunnel, it is of great significance to accurately predict the dynamic characteristics of SMA. We establish eight SMA prediction models based on the data of five earth pressure balance (EPB) shield machines. The algorithms adopted in the models are four machine learning (ML) algorithms (KNN, SVR, RF, AdaBoost) and four deep learning (DL) algorithms (BPNN, CNN, LSTM, GRU). This paper obtains the hyperparameters of the models by utilizing grid search and K-fold cross-validation techniques and uses EVS and RMSE to verify and evaluate the prediction performances of the models. The prediction results reveal that the two best algorithms are the LSTM and GRU with EVS > 0.98 and RMSE < 1.5. Then, integrating ML algorithms and DL algorithms, we design a warning predictor for SMA. Through the historical 5-cycle data, the predictor can give a warning in advance if the SMA deviates significantly from DTA. This study indicates that AI technologies have considerable promise in the field of SMA dynamic prediction.


2021 ◽  
Vol 53 (5) ◽  
pp. 210503
Author(s):  
Fahmi Aldiamar ◽  
Masyhur Irsyam ◽  
Bigman Hutapea ◽  
Endra Susila ◽  
Ramli Nazir

Mass Rapid Transit Jakarta (MRTJ) phase 1 tunnel construction using the earth pressure balance method has been completed and surface settlement and lateral displacement data according to elevation and inclinometer readings has been collected to evaluate the effect of tunnel’s construction on surrounding infrastructure. Soil stratification along the research area, defined according to boring logs and soil parameters for the hardening soil model (HSM) and the soft soil model (SSM), was determined by optimization of stress-strain curve fitting between CU triaxial test, consolidation test and soil test models in the Plaxis 3D software. Evaluation of the result of surface settlement measurements using an automatic digital level combined with geodetic GPS for elevation and position control points showed that the displacement behavior was affected by vehicle load and stiffness of the pavement. Lateral displacement measurements using inclinometers give a more accurate result since they are placed on the soil and external influences are smaller than surface settlement measurement. The result of 3D finite element modeling showed that surface settlement and lateral displacement during TBM construction can be predicted using HSM with 2% contraction. SSM and the closed-form solutions of Loganathan and Poulos are unable to provide a good result compared to the actual displacement from measurements.


2014 ◽  
Vol 607 ◽  
pp. 118-123
Author(s):  
Lai Kuang Lin ◽  
Yi Min Xia ◽  
Fei He ◽  
Qing Song Mao ◽  
Kui Zhang

In view of complex and fuzziness of geological adaptive cutterhead selection for earth pressure balance (EPB) shield, a cutterhead selection method based on BP neural network is put forward. Considering the structure characteristics of EPB shield cutterhead, typical cutterhead types are classified and summarized based on cutterhead topology structure and number of spokes. After analyzing the determinants of cutterhead selection, one-to-many mapping relation between cutterhead type and geological parameters is put forward, and then core geologic parameters related to cutterhead selection are concluded. The feasibility of using neural network method to choose the cutterhead type is analyzed, and a BP neural network training model for cutterhead selection is set up and tested in testing sample data. The result shows that the selected cutterhead and the construction cutterhead are basically consistent. The feasibility of this method is proved and it can be theoretical basis for the cutterhead structure design which will improve scientific of cutterhead selection.


2018 ◽  
Vol 52 (1-2) ◽  
pp. 3-10 ◽  
Author(s):  
Xuanyu Liu ◽  
Kaiju Zhang

Background: Earth pressure balance shield machines are widely used in underground engineering. To prevent ground deformation even disastrous accidents, the earth pressure in soil chamber must be kept balance to that on excavation face during shield tunneling. Therefore, in this paper an advanced control strategy that a least squares support vector machine model-based predictive control scheme for earth pressure balance is developed. Methods: A prediction model is established to predict the earth pressure in chamber during the tunneling process by means of least squares support vector machine technology. On this basis, an optimization function is given which aims at minimizing the difference between the predicted earth pressure and the desired one. To obtain the optimal control actions, an improved ant colony system algorithm is used as rolling optimization for earth pressure balance control in real time. Results: Based on the field data the simulation experiments are performed. The results demonstrate that the method proposed is very effective to control earth pressure balance, and it has good stability. Conclusion: The screw conveyor speed and advance speed are the major factors affecting the earth pressure in chamber. The excavation face could be controlled balance better by adjusting the screw conveyor speed and advance speed.


2011 ◽  
Vol 255-260 ◽  
pp. 3282-3286
Author(s):  
Xiu Shan Wang ◽  
Li Wang ◽  
Xiao Jun Ding

The method to analysis the strength of planetary trains’ carriers of EPB(earth pressure balance) shield machine is presented in this paper. The structure of the shield machine trains is analyzed and the 3-D solid model of the carrier is built with Pro/E. After the load on the carrier has been dealt with, the strength of carrier is calculated by means of finite element method. The results via ANSYS show that the max stress and strain on the carriers are increasing as the increasing load on it. The max stress is lying on the joint point of the carrier and planetary gear shaft because of the bending deformation of the shaft.


Sign in / Sign up

Export Citation Format

Share Document