gray relational analysis
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 100)

H-INDEX

17
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Shouzhi Chen ◽  
Yongshuo H. Fu ◽  
Xiaojun Geng ◽  
Zengchao Hao ◽  
Jing Tang ◽  
...  

Climate warming has changed vegetation phenology, and the phenology-associated impacts on terrestrial water fluxes remain largely unquantified. The impacts are linked to plant adjustments and responses to climate change and can be different in different hydroclimatic regions. Based on remote sensing data and observed river runoff of hydrological station from six river basins across a hydroclimatic gradient from northeast to southwest in China, the relative contributions of the vegetation (including spring and autumn phenology, growing season length (GSL), and gross primary productivity) and climatic factors affecting the river runoffs over 1982–2015 were investigated by applying gray relational analysis (GRA). We found that the average GSLs in humid regions (190–241 days) were longer than that in semi-humid regions (186–192 days), and the average GSLs were consistently extended by 4.8–13.9 days in 1982–2015 period in six river basins. The extensions were mainly linked to the delayed autumn phenology in the humid regions and to advanced spring phenology in the semi-humid regions. Across all river basins, the GRA results showed that precipitation (r = 0.74) and soil moisture (r = 0.73) determine the river runoffs, and the vegetation factors (VFs) especially the vegetation phenology also affected the river runoffs (spring phenology: r = 0.66; GSL: r = 0.61; autumn phenology: r = 0.59), even larger than the contribution from temperature (r = 0.57), but its relative importance is climatic region-dependent. Interestingly, the spring phenology is the main VF in the humid region for runoffs reduction, while both spring and autumn growth phenology are the main VFs in the semi-humid region, because large autumn phenology delay and less water supply capacity in spring amplify the effect of advanced spring phenology. This article reveals diverse linkages between climatic and VFs, and runoff in different hydroclimatic regions, and provides insights that vegetation phenology influences the ecohydrology process largely depending on the local hydroclimatic conditions, which improve our understanding of terrestrial hydrological responses to climate change.


Author(s):  
MAHIR AKGÜN

This study focuses on optimization of cutting conditions and modeling of cutting force ([Formula: see text]), power consumption ([Formula: see text]), and surface roughness ([Formula: see text]) in machining AISI 1040 steel using cutting tools with 0.4[Formula: see text]mm and 0.8[Formula: see text]mm nose radius. The turning experiments have been performed in CNC turning machining at three different cutting speeds [Formula: see text] (150, 210 and 270[Formula: see text]m/min), three different feed rates [Formula: see text] (0.12 0.18 and 0.24[Formula: see text]mm/rev), and constant depth of cut (1[Formula: see text]mm) according to Taguchi L18 orthogonal array. Kistler 9257A type dynamometer and equipment’s have been used in measuring the main cutting force ([Formula: see text]) in turning experiments. Taguchi-based gray relational analysis (GRA) was also applied to simultaneously optimize the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]). Moreover, analysis of variance (ANOVA) has been performed to determine the effect levels of the turning parameters on [Formula: see text], [Formula: see text] and [Formula: see text]. Then, the mathematical models for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) have been developed using linear and quadratic regression models. The analysis results indicate that the feed rate is the most important factor affecting [Formula: see text] and [Formula: see text], whereas the cutting speed is the most important factor affecting [Formula: see text]. Moreover, the validation tests indicate that the system optimization for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) is successfully completed with the Taguchi method at a significance level of 95%.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jiangmei Chen ◽  
Wende Zhang ◽  
Qishan Zhang

PurposeThe purpose of the paper is to improve the rating prediction accuracy in recommender systems (RSs) by metric learning (ML) method. The similarity metric of user and item is calculated with gray relational analysis.Design/methodology/approachFirst, the potential features of users and items are captured by exploiting ML, such that the rating prediction can be performed. In metric space, the user and item positions can be learned by training their embedding vectors. Second, instead of the traditional distance measurements, the gray relational analysis is employed in the evaluation of the position similarity between user and item, because the latter can reduce the impact of data sparsity and further explore the rating data correlation. On the basis of the above improvements, a new rating prediction algorithm is proposed. Experiments are implemented to validate the effectiveness of the algorithm.FindingsThe novel algorithm is evaluated by the extensive experiments on two real-world datasets. Experimental results demonstrate that the proposed model achieves remarkable performance on the rating prediction task.Practical implicationsThe rating prediction algorithm is adopted to predict the users' preference, and then, it provides personalized recommendations for users. In fact, this method can expand to the field of classification and provide potentials for this domain.Originality/valueThe algorithm can uncover the finer grained preference by ML. Furthermore, the similarity can be measured using gray relational analysis, which can mitigate the limitation of data sparsity.


2021 ◽  
Author(s):  
Zohreh Shakeria ◽  
Khaled Benfriha ◽  
Nader Zirak ◽  
Mohammadali Shirinbayan

Abstract One of the most widely used additive manufacturing (AM) methods is Fused Filament Fabrication (FFF), which can produce complex geometry parts. In this process, a continuous filament of thermoplastic material is deposited layer by layer to make the final piece. One of the essential goals in the production of parts with this method is to produce parts with high mechanical properties and excellent geometrical accuracy at the same time. Among the various methods used to improve the desired properties of produced parts is to determine the optimum process parameters in this process. This paper investigates the effect of different process parameters on four essential parameters: chamber temperature, Printing temperature, layer thickness, and print speed on cylindricity, circularity, strength, Young’s modulus, and deformation by Gray Relational Analysis method simultaneously. Taguchi method was used to design the experiments, and the PA6 cylindrical parts were fabricated using a German RepRap X500® 3D printer. Then the GRG values were calculated for all experiments. In the 8th trial, the highest value of GRG was observed. Then, to discover the optimal parameters, the GRG data were analyzed using ANOVA and S/N analysis, and it was determined that the best conditions for enhancing GRG are 60 °C in the chamber temperature, 270 °C in the printing temperature, 0.1 mm layer thickness, and 600 mm/min print speed. Finally, by using optimal parameters, a verification test was performed, and new components were investigated. Finally, by comparing the initial GRG with the GRG of the experiment, it was discovered that the GRG value had improved by 14%.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 341
Author(s):  
Chih-Sheng Chang

In addition to intellectual performance, children with intellectual disability also seem to have lower performance than children without intellectual disability in terms of balance. Therefore, they often experience walking instability or fall due to imbalance, causing injuries. With regard to balance training courses provided by medical or special education personnel for children with intellectual disability, although there are subjective observation scales that describe their balance in a qualitative way, there are still few direct measurement methods that can provide personnel with the ability to evaluate the training results of an intervention program. The purpose of this study was to provide a method for evaluating the balance of children with intellectual disability to facilitate a general inspection or evaluation of balance before and after the implementation of various intervention programs that help movement development. In recent years, the force platform system has been widely used in the research of the elderly balance, yet the research on balance assessment tools applied to children is rare. This study used the objective, fast, and accurate characteristics of the force platform system to analyze the key points of the sit-to-stand movement and the movement balance parameters of children with intellectual disability and children without intellectual disability. Using the gray relational analysis (GRA) method, the time factors and weight factors from the average performance of children without intellectual disabilities was used as the analysis data. After analyzing the relevance between each participant and the target, a norm for evaluating the balance of children with intellectual disability was established. Hence, this valuable result can provide researchers, special education teachers, and related professionals with an effective and time-saving evaluation of the balance of children with intellectual disability.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7490
Author(s):  
Nan Wu ◽  
Li Li ◽  
Zhi-Chen Cai ◽  
Jia-Huan Yuan ◽  
Wen-Xin Wang ◽  
...  

Taxilli Herba (TAXH) is an important traditional Chinese medicine with a long history, dating from the Eastern Han Dynasty to the present times. However, the active constituents in it that parasitize different hosts vary, affecting its clinical efficacy. Given the complexity of the host origins, evaluating the quality of TAXH is critical to ensure the safety and effectiveness of clinical medication. In the present study, a quantitative method based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-QTRAP-MS/MS) was established, which simultaneously determined the content of 33 active constituents, including 12 flavonoids, 4 organic acids, 12 amino acids, and 5 nucleosides in 45 samples. Orthogonal partial least squares discriminant analysis (OPLS-DA) was employed to classify and distinguish between TAXH and its adulterants, Tolypanthi Herba (TOLH). A hierarchical clustering analysis (HCA) was conducted combined with a heatmap to visually observe the distribution regularity of 33 constituents in each sample. Furthermore, gray relational analysis (GRA) was applied to evaluate the quality of samples to get the optimal host. The results demonstrated that TAXH excelled TOLH in quality as a whole. The quality of TAXH parasitizing Morus alba was also better, while those that were parasitic on Cinnamomum camphora and Glyptostrobus pensilis had relatively poor quality. This study may provide comprehensive information that is necessary for quality control and supply a scientific basis for further exploring the quality formation mechanism of TAXH.


Author(s):  
Gürcan Samtaş ◽  
Berat Serhat Bektaş

Abstract The aluminum 6061 alloy is commonly employed in the automotive industry in the manufacture of rims, panels and even the chasses of vehicles and has excellent machinability. In this study, the surface of the cryogenically processed aluminum 6061-T651 alloy was milled using both untreated and cryogenically treated TiN-TiCN-Al2O3-coated cutting inserts. The Taguchi L18 orthogonal array was chosen as the experimental design. As the cutting parameters in the experiments, two different cutting inserts (untreated and cryogenically treated, TiN-TiCN-Al2O3-coated), three different cutting speeds (250, 350 and 450 m/min) and three different feed rates (0.15, 0.30 and 0.45 mm/rev) were used. After each experiment, the surface roughness and wear values of the cutting inserts were measured, the latter after repeating the experiment five times. Wear and roughness values were optimized using the Taguchi method. Additionally, Gray Relational Analysis (GRA) was used for the combined optimization of wear and roughness values. The optimized findings determined using Taguchi optimization for minimum surface roughness were the cryogenically treated cutting insert, 250 m/min cutting speed and 0.45 mm/rev feed rate. The optimized findings for wear were the cryogenically treated cutting insert, 350 m/min cutting speed and 0.30 mm/rev feed rate. In the optimization with GRA, the common optimum parameters for surface roughness and wear were the cryogenically treated cutting insert, 250 m/min cutting speed and 0.15 mm/rev feed rate. According to the Taguchi and GRA results, the cryogenically treated cutting inserts performed the best in terms of minimum wear and surface roughness. The Gray-based Taguchi methodology proposed in this study was found to be effective in solving the decision-making problem in multi-specific results as wear and surface roughness.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7375
Author(s):  
Xiaoshuang Shi ◽  
Cong Zhang ◽  
Yongchen Liang ◽  
Jinqian Luo ◽  
Xiaoqi Wang ◽  
...  

Geopolymer concrete (GPC) has drawn widespread attention as a universally accepted ideal green material to improve environmental conditions in recent years. The present study systematically quantifies and compares the environmental impact of fly ash GPC and ordinary Portland cement (OPC) concrete under different strength grades by conducting life cycle assessment (LCA). The alkali activator solution to fly ash ratio (S/F), sodium hydroxide concentration (CNaOH), and sodium silicate to sodium hydroxide ratio (SS/SH) were further used as three key parameters to consider their sensitivity to strength and CO2 emissions. The correlation and influence rules were analyzed by Multivariate Analysis of Variance (MANOVA) and Gray Relational Analysis (GRA). The results indicated that the CO2 emission of GPC can be reduced by 62.73%, and the correlation between CO2 emission and compressive strength is not significant for GPC. The degree of influence of the three factors on the compressive strength is CNaOH (66.5%) > SS/SH (20.7%) > S/F (9%) and on CO2 emissions is S/F (87.2%) > SS/SH (10.3%) > CNaOH (2.4%). Fly ash GPC effectively controls the environmental deterioration without compromising its compressive strength; in fact, it even in favor.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shuicheng Tian ◽  
Guangtong Shao ◽  
Hongxia Li ◽  
Pengfei Yang ◽  
Qingxin Dang ◽  
...  

A large number of accidents and scientific researches show that miners’ unsafe behavior affects coal mine safety production seriously. In order to effectively reduce the incidence of miners’ unsafe behavior, to improve their safety level, and reduce accidents caused by it, this paper used gray relational analysis method to analyze the miners’ unsafe behavior of W mine and quantitatively calculated the risk value of miners’ unsafe behavior. The results showed that the risk value of unsafe behavior in violation of labor discipline was 0.4358, which was much higher than that of other miners’ unsafe behaviors. Therefore, unsafe behavior in violation of labor discipline was determined as the key point of control in the next stage. Then, GM (1, 1) method was used to establish a predicted model for unsafe behavior, to predict the number of unsafe behaviors in violating labor discipline in next quarter, and to determine reasonable unsafe behavior control target. This study plays a driving role in controlling unsafe behaviors of miners and improving safe production water of coal mine.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7240
Author(s):  
Qingwei Xu ◽  
Kaili Xu

Background: Although hydraulic support can help enterprises in their production activities, it can also cause fatal accidents. Methods: This study established a composite risk-assessment method for hydraulic support failure in the mining industry. The key basic event of hydraulic support failure was identified based on fault tree analysis and gray relational analysis, and the evolution mechanism of hydraulic support failure was investigated based on chaos theory, a synthetic theory model, and cause-and-effect-layer-of-protection analysis (LOPA). Results: After the basic events of hydraulic support failure are identified based on fault tree analysis, structure importance (SI), probability importance (PI), critical importance (CI), and Fussell–Vesely importance (FVI) can be calculated. In this study, we proposed the Fussell–Vesely–Xu importance (FVXI) to reflect the comprehensive impact of basic event occurrence and nonoccurrence on the occurrence probability of the top event. Gray relational analysis was introduced to determine the integrated importance (II) of basic events and identify the key basic events. According to chaos theory, hydraulic support failure is the result of cross-coupling and infinite amplification of faults in the employee, object, environment, and management subsystems, and the evolutionary process has an obvious butterfly effect and inherent randomness. With the help of the synthetic theory model, we investigated the social and organizational factors that may lead to hydraulic support failure. The key basic event, jack leakage, was analyzed in depth based on cause-and-effect-LOPA, and corresponding independent protection layers (IPLs) were identified to prevent jack leakage. Implications: The implications of these findings with respect to hydraulic support failure can be regarded as the foundation for accident prevention in practice.


Sign in / Sign up

Export Citation Format

Share Document